Entire spacelike radial graphs in the Minkowski space, asymptotic to the light-cone, with prescribed scalar curvature

Pierre Bayard; Philippe Delanoë

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 903-915
  • ISSN: 0294-1449

How to cite

top

Bayard, Pierre, and Delanoë, Philippe. "Entire spacelike radial graphs in the Minkowski space, asymptotic to the light-cone, with prescribed scalar curvature." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 903-915. <http://eudml.org/doc/78873>.

@article{Bayard2009,
author = {Bayard, Pierre, Delanoë, Philippe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {radial graphs; space-like; entire solution; prescribed scalar curvature; upper and lower barriers},
language = {eng},
number = {3},
pages = {903-915},
publisher = {Elsevier},
title = {Entire spacelike radial graphs in the Minkowski space, asymptotic to the light-cone, with prescribed scalar curvature},
url = {http://eudml.org/doc/78873},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Bayard, Pierre
AU - Delanoë, Philippe
TI - Entire spacelike radial graphs in the Minkowski space, asymptotic to the light-cone, with prescribed scalar curvature
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 903
EP - 915
LA - eng
KW - radial graphs; space-like; entire solution; prescribed scalar curvature; upper and lower barriers
UR - http://eudml.org/doc/78873
ER -

References

top
  1. [1] Bartnik R., Existence of maximal surfaces in asymptotically flat spacetimes, Commun. Math. Phys.94 (1984) 155-175. Zbl0548.53054MR761792
  2. [2] Bayard P., Dirichlet problem for space-like hypersurfaces with prescribed scalar curvature in R n , 1 , Calc. Var.18 (2003) 1-30. Zbl1043.53027MR2001880
  3. [3] Bayard P., Entire spacelike hypersurfaces of prescribed scalar curvature in Minkowski space, Calc. Var.26 (2) (2006) 245-264. Zbl1114.35069MR2222246
  4. [4] P. Bayard, O. Schnürer, Entire spacelike hypersurfaces of constant Gauss curvature in Minkowski space, preprint, 2006. Zbl1161.53041MR2494911
  5. [5] Caffarelli L., Nirenberg L., Spruck J., Nonlinear second order elliptic equations IV. Starshaped compact Weingarten hypersurfaces, in: Kasahara K., Ohya Y., Shimakura N. (Eds.), Current Topics in Partial Differential Equations, Kinokunize Co., Tokyo, 1986, pp. 1-26. Zbl0672.35027MR1112140
  6. [6] Delanoë Ph., Plongements radiaux S n R n + 1 à courbure de Gauss positive prescrite, Ann. Sci. École Norm. Sup. (4)18 (1985) 635-649. Zbl0594.53039MR839688
  7. [7] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, 1983. Zbl0562.35001MR737190
  8. [8] Guan B., Jian H.-Y., Schoen R.M., Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space, J. reine angew. Math.595 (2006) 167-188. Zbl1097.53040MR2244801
  9. [9] Ivochkina N.M., A description of the stability cones generated by differential operators of Monge–Ampère type, Math. USSR Sb.50 (1) (1985) 259-268. Zbl0556.35026
  10. [10] Ivochkina N.M., Solution of the Dirichlet problem for curvature equations of order m, Math. USSR Sb.67 (2) (1990) 317-339. Zbl0709.35046MR1014618
  11. [11] Li A.-M., Spacelike hypersurfaces with constant Gauss–Kronecker curvature in the Minkowski space, Arch. Math.64 (6) (1995) 534-551. Zbl0828.53050MR1329827
  12. [12] Potter A.J.B., An elementary version of the Leray–Schauder theorem, J. London Math. Soc.5 (2) (1972) 414-416. Zbl0242.47037MR312342
  13. [13] Treibergs A.E., Wei S.W., Embedded hyperspheres with prescribed mean curvature, J. Differential Geom.18 (1983) 513-521. Zbl0529.53043MR723815
  14. [14] Trudinger N.S., The Dirichlet problem for the prescribed curvature equations, Arch. Rat. Mech. Anal.111 (1990) 99-112. Zbl0703.35070MR1057653
  15. [15] Urbas J., The Dirichlet problem for the equation of prescribed scalar curvature in Minkowski space, Calc. Var.18 (2003) 307-316. Zbl1080.53062MR2018670

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.