Standing waves for nonlinear Schrödinger equations with singular potentials

Jaeyoung Byeon; Zhi-Qiang Wang

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 943-958
  • ISSN: 0294-1449

How to cite

top

Byeon, Jaeyoung, and Wang, Zhi-Qiang. "Standing waves for nonlinear Schrödinger equations with singular potentials." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 943-958. <http://eudml.org/doc/78875>.

@article{Byeon2009,
author = {Byeon, Jaeyoung, Wang, Zhi-Qiang},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equations; singularities of potentials; decaying and unbounded potentials},
language = {eng},
number = {3},
pages = {943-958},
publisher = {Elsevier},
title = {Standing waves for nonlinear Schrödinger equations with singular potentials},
url = {http://eudml.org/doc/78875},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Byeon, Jaeyoung
AU - Wang, Zhi-Qiang
TI - Standing waves for nonlinear Schrödinger equations with singular potentials
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 943
EP - 958
LA - eng
KW - nonlinear Schrödinger equations; singularities of potentials; decaying and unbounded potentials
UR - http://eudml.org/doc/78875
ER -

References

top
  1. [1] Ambrosetti A., Felli V., Malchiodi A., Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc.7 (2005) 117-144. Zbl1064.35175MR2120993
  2. [2] Ambrosetti A., Malchiodi A., Perturbation Methods and Semilinear Elliptic Problems on R n , Progress in Mathematics, vol. 240, Birkhäuser Verlag, Basel, 2006. Zbl1115.35004MR2186962
  3. [3] Ambrosetti A., Malchiodi A., Ni W.-M., Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, I, Commun. Math. Phys.235 (2003) 427-466. Zbl1072.35019MR1974510
  4. [4] Ambrosetti A., Malchiodi A., Ruiz D., Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. d'Analyse Math.98 (2006) 317-348. Zbl1142.35082MR2254489
  5. [5] Ambrosetti A., Ruiz D., Radial solutions concentrating on spheres of NLS with vanishing potentials, preprint, Proc. Roy. Soc. Edinburgh Sect. A136 (2006) 889-907. Zbl1126.35059MR2266391
  6. [6] Ambrosetti A., Wang Z.-Q., Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential Integral Equations18 (2005) 1321-1332. Zbl1210.35087MR2174974
  7. [7] Byeon J., Jeanjean L., Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal.185 (2007) 185-200. Zbl1132.35078MR2317788
  8. [8] Byeon J., Oshita Y., Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations, Comm. Partial Differential Equations29 (2004) 1877-1904. Zbl1088.35062MR2106071
  9. [9] Byeon J., Wang Z.-Q., Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal.165 (2002) 295-316. Zbl1022.35064MR1939214
  10. [10] Byeon J., Wang Z.-Q., Standing waves with a critical frequency for nonlinear Schrödinger equations, II, Cal. Var. Partial Differential Equations18 (2003) 207-219. Zbl1073.35199MR2010966
  11. [11] Byeon J., Wang Z.-Q., Spherical semiclassical states of a critical frequency for Schrödinger equations with decaying potentials, J. Eur. Math. Soc.8 (2006) 217-228. Zbl1245.35036MR2239273
  12. [12] Caffarelli L., Kohn R., Nirenberg L., First order interpolation inequalities with weights, Compositio Math.53 (1984) 259-275. Zbl0563.46024MR768824
  13. [13] Dancer E.N., Yan S., On the existence of multipeak solutions for nonlinear field equations on R n , Discrete Contin. Dynam. Systems6 (2000) 39-50. Zbl1157.35367MR1739592
  14. [14] Del Pino M., Felmer P.L., Semi-classical states for nonlinear Schrödinger equations: A variational reduction method, Math. Ann.324 (2002) 1-32. Zbl1030.35031MR1931757
  15. [15] Floer A., Weinstein A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal.69 (1986) 397-408. Zbl0613.35076MR867665
  16. [16] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., vol. 224, second ed., Springer, Berlin, 1983. Zbl0562.35001MR737190
  17. [17] Kang X., Wei J., On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations5 (2000) 899-928. Zbl1217.35065MR1776345
  18. [18] Lieb E.H., Seiringer R., Proof of Bose–Einstein condensation for dilute trapped gases, Phys. Rev. Lett.88 (2002) 170409. Zbl1041.81107
  19. [19] Meystre P., Atom Optics, Springer, 2001. 
  20. [20] Mills D.L., Nonlinear Optics, Springer, 1998. Zbl0914.00011
  21. [21] Rabinowitz P.H., On a class of nonlinear Schrödinger equations, ZAMP43 (1992) 270-291. Zbl0763.35087MR1162728
  22. [22] Wang X., Zeng B., On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal.28 (1997) 633-655. Zbl0879.35053MR1443612

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.