Homogenization of periodic semilinear parabolic degenerate PDEs

A. B. Sow; R. Rhodes; É. Pardoux

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 979-998
  • ISSN: 0294-1449

How to cite

top

Sow, A. B., Rhodes, R., and Pardoux, É.. "Homogenization of periodic semilinear parabolic degenerate PDEs." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 979-998. <http://eudml.org/doc/78877>.

@article{Sow2009,
author = {Sow, A. B., Rhodes, R., Pardoux, É.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {backward stochastic differential equation; degenerate diffusion coefficient; Feynman-Kac formula},
language = {eng},
number = {3},
pages = {979-998},
publisher = {Elsevier},
title = {Homogenization of periodic semilinear parabolic degenerate PDEs},
url = {http://eudml.org/doc/78877},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Sow, A. B.
AU - Rhodes, R.
AU - Pardoux, É.
TI - Homogenization of periodic semilinear parabolic degenerate PDEs
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 979
EP - 998
LA - eng
KW - backward stochastic differential equation; degenerate diffusion coefficient; Feynman-Kac formula
UR - http://eudml.org/doc/78877
ER -

References

top
  1. [1] Bensoussan A., Lions J.L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, North-Holland, 1978. Zbl0404.35001MR503330
  2. [2] Briand P., Hu Y., Stability of BSDEs with random terminal time and homogenization of semilinear elliptic PDEs, J. Funct. Anal.155 (1998) 455-494. Zbl0912.60081MR1624569
  3. [3] Buckdahn R., Hu Y., Peng S., Probabilistic approach to homogenization of viscosity solutions of parabolic PDEs, NoDEA Nonlinear Differential Equations Appl.6 (4) (1999) 395-411. Zbl0953.35017MR1736544
  4. [4] Crandall M., Ishii H., Lions P.L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc.27 (1992) 1-67. Zbl0755.35015MR1118699
  5. [5] De Arcangelis R., Serra Cassano F., On the homogenization of degenerate elliptic equations in divergence form, J. Math. Pures Appl.71 (1992) 119-138. Zbl0678.35036MR1170248
  6. [6] Delarue F., On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stochastic Process. Appl.99 (2) (2002) 209-286. Zbl1058.60042MR1901154
  7. [7] Delarue F., Auxiliary SDEs for homogenization of quasilinear PDEs with periodic coefficients, Ann. Probab. B32 (3) (2004) 2305-2361. Zbl1073.35021MR2078542
  8. [8] Delarue F., Rhodes R., Stochastic homogenization of quasilinear PDEs with a spatial degeneracy, Asymptot. Anal., in press, available on, http://hal.archives-ouvertes.fr/. Zbl1180.35591MR2499193
  9. [9] Diop M.A., Iftimie B., Pardoux E., Piatnitski A., Singular homogenization with stationary in time and periodic in space coefficients, J. Funct. Anal.231 (2006) 1-46. Zbl1113.35015MR2190162
  10. [10] Engström J., Persson L.-E., Piatnitski A., Wall P., Homogenization of random degenerated nonlinear monotone operators, Glas. Mat. Ser. III41 (61) (2006) 101-114. Zbl1118.35003MR2242396
  11. [11] Ethier S.N., Kurtz T.G., Markov Processes, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, 1986. Zbl0592.60049MR838085
  12. [12] Freidlin M., The Dirichlet problem for an equation with periodic coefficients depending on a small parameter, Teor. Veroyatnost. i Primenen.9 (1964) 133-139. Zbl0138.11602MR163062
  13. [13] Hairer M., Pardoux E., Homogenization of periodic linear degenerate PDEs, available on, arXiv:math/0702304v1. Zbl1167.60015MR2473263
  14. [14] Heron B., Mossino J., H-convergence and regular limits for stratified media with low and high conductivities, Appl. Anal.57 (3–4) (1995) 271-308. Zbl0833.35010MR1384376
  15. [15] Huang Y., Su N., Zhang X., Homogenization of degenerate quasilinear parabolic equations with periodic structure, Asymptotic Anal.48 (2006) 77-89. Zbl1157.35313MR2233379
  16. [16] Jakobsen E.R., Karlsen K.H., Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations, J. Differential Equations183 (2002) 497-525. Zbl1086.35061MR1919788
  17. [17] A. Lejay, Méthodes probabilistes pour l'homogénéisation des opérateurs sous forme divergence, Thèse de l'université de Provence, 2000. 
  18. [18] Meyer P.A., Zheng W.A., Tightness criteria for laws of semartingales, Ann. Inst. Henri Poincaré20 (1984) 353-372. Zbl0551.60046MR771895
  19. [19] Pardoux E., Homogenization of a linear and semilinear second order parabolic PDEs with periodic coefficients: A probabilistic approach, J. Funct. Anal.167 (1999) 498-520. Zbl0935.35010MR1716206
  20. [20] Pardoux E., BSDEs, weak convergence and homogenization of semilinear PDEs, in: Clarke F.H., Stern R.J. (Eds.), Nonlinear Analysis, Differential Equations and Control, Kluwer Acad. Publ., 1999, pp. 503-549. Zbl0959.60049MR1695013
  21. [21] Pardoux E., Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, in: Decreusefond L., Gjerde J., Oksendal B., Üstünel A.S. (Eds.), Stochastic Analysis and Related Topics VI: The Geilo Workshop, 1996, Birkhäuser, 1998, pp. 79-127. Zbl0893.60036MR1652339
  22. [22] Pardoux E., Peng S., Backward stochastic differential equations and quasilinear parabolic partial differential equations, in: Rozovskii B.L., Sowers R.S. (Eds.), Stochastic Partial Differential Equations and their Applications, Lecture Notes in Control & Information Sciences, vol. 176, Springer, Berlin, 1992, pp. 200-217. Zbl0766.60079MR1176785
  23. [23] Pardoux E., Veretennikov A.Yu., Averaging of backward stochastic differential equations with application to semilinear PDE's, Stochastics Stochastic Rep.60 (1997) 255-270. Zbl0891.60053MR1467720
  24. [24] Pardoux E., Veretennikov A.Yu., On Poisson equation and diffusion approximation 1, Ann. Probab.29 (2001) 1061-1085. Zbl1029.60053MR1872736
  25. [25] Pardoux E., Yu Veretennikov A., On Poisson equation and diffusion approximation 3, Ann. Probab.33 (2005). Zbl1071.60022MR2135314
  26. [26] Paronetto F., Serra Cassano F., On the convergence of a class of degenerate parabolic equations, J. Math. Pures Appl.77 (1998) 851-878. Zbl0920.35082MR1656776
  27. [27] Paronetto F., Homogenization of a class of degenerate parabolic equations, Asymptotic Anal.21 (1999) 275-302. Zbl0945.35009MR1728026
  28. [28] Paronetto F., Homogenization of degenerate elliptic-parabolic equations, Asymptotic Anal.37 (2004) 21-56. Zbl1052.35025MR2035361
  29. [29] Rhodes R., On homogenization of space-time dependent and degenerate random flows, Stochastic Process. Appl.117 (2007) 1561-1585. Zbl1127.60027MR2353040
  30. [30] R. Rhodes, Homogenization of locally ergodic diffusions with possibly degenerate diffusion matrix, Ann. Inst. H. Poincaré Probab. Statist., in press. Zbl1207.60029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.