Cohomologically rigid vector fields : the Katok conjecture in dimension 3
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 4, page 1165-1182
- ISSN: 0294-1449
Access Full Article
topHow to cite
topKocsard, Alejandro. "Cohomologically rigid vector fields : the Katok conjecture in dimension 3." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1165-1182. <http://eudml.org/doc/78884>.
@article{Kocsard2009,
author = {Kocsard, Alejandro},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Katok conjecture; cohomological rigidity; Diophantine vector field},
language = {eng},
number = {4},
pages = {1165-1182},
publisher = {Elsevier},
title = {Cohomologically rigid vector fields : the Katok conjecture in dimension 3},
url = {http://eudml.org/doc/78884},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Kocsard, Alejandro
TI - Cohomologically rigid vector fields : the Katok conjecture in dimension 3
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1165
EP - 1182
LA - eng
KW - Katok conjecture; cohomological rigidity; Diophantine vector field
UR - http://eudml.org/doc/78884
ER -
References
top- [1] Anosov D., Geodesic flows on closed riemannian manifolds of negative curvature, Proceedings of the Steklov Institute of Mathematics90 (1967) 1-235. Zbl0176.19101MR224110
- [2] Bowen R., Walters P., Expansive one-parameter flows, Journal of Differential Equations12 (1972) 180-193. Zbl0242.54041MR341451
- [3] Doering C., Persistently transitive vector fields on three-dimensional manifolds, in: Dynamical Systems and Bifurcation Theory, Pitman Res. Notes Math. Ser., vol. 160, Longman Sci. Tech., 1987. Zbl0631.58016MR907891
- [4] Flaminio L., Forni G., On the cohomological equation for nilflows, Journal of Modern Dynamics1 (1) (2007) 37-60. Zbl1114.37004MR2261071
- [5] Forni G., On the Greenfield–Wallach and Katok conjectures, preprint, available at:, http://arxiv.org/abs/0706.3981. Zbl1156.37003
- [6] Fuller F., The existence of periodic points, Annals of Mathematics57 (2) (1953) 229-230. Zbl0050.17203MR52764
- [7] Greenfield S., Wallach N., Globally hypoelliptic vector fields, Topology12 (1973) 247-253. Zbl0268.58007MR320502
- [8] Herman M., Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publications Mathématiques de l'I.H.É.S.49 (1979) 5-233. Zbl0448.58019MR538680
- [9] Hurder S., Problems of rigidity of group actions and cocycles, Ergodic Theory & Dynamical Systems5 (1985) 473-484. Zbl0589.22006MR805843
- [10] Katok A., Combinatorial Constructions in Ergodic Theory and Dynamical Systems, University Lecture Series, vol. 30, American Mathematical Society, 2003. Zbl1030.37001MR2008435
- [11] Katok A., Robinson E., Cocycles, cohomology and combinatorial constructions in ergodic theory, in: Smooth Ergodic Theory and its Applications, Proceedings of the Symposia in Pure Mathematics, vol. 69, 2001. Zbl0994.37003MR1858535
- [12] Katok A., Spatzier R., First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Publications Mathématiques de l'I.H.É.S.79 (1994) 131-156. Zbl0819.58027MR1307298
- [13] A. Kocsard, Toward the classification of cohomology-free vector fields, Ph.D. thesis, IMPA, 2007.
- [14] Mañé R., Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Transactions of the American Mathematical Society229 (1977) 351-370. Zbl0356.58009MR482849
- [15] S. Matsumoto, The parameter rigid flows on 3-manifolds, preprint, 2007.
- [16] Matsumoto S., Mitsumatsu Y., Leafwise cohomology and rigidity of certain Lie group actions, Ergodic Theory & Dynamical Systems23 (2003) 1839-1866. Zbl1052.22020MR2032491
- [17] Moser J., On the volume elements on a manifold, Transactions of the American Mathematical Society120 (1965) 186-294. Zbl0141.19407MR182927
- [18] Nakayama H., Noda T., Minimal sets and chain recurrent sets of projective flows induced from minimal flows on 3-manifolds, Discrete and Continuous Dynamical Systems12 (4) (2005) 629-638. Zbl1075.37011MR2129363
- [19] Oseledets V., A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Transactions of the Moscow Mathematical Society19 (1968) 197-231. Zbl0236.93034
- [20] Paternain M., Expansive flows and the fundamental group, Boletim da Sociedade Brasileira de Matemática24 (2) (1993) 179-199. Zbl0796.58040MR1254982
- [21] Rodríguez Hertz F., Rodríguez Hertz J., Cohomology free systems and the first Betti number, Discrete and Continuous Dynamical Systems15 (2006) 193-196. Zbl1105.37013MR2191392
- [22] Rosenberg H., Roussarie R., Weil D., A classification of closed orientable 3-manifolds of rank 2, Annals of Mathematics91 (3) (1970) 449-464. Zbl0195.25404MR270391
- [23] Sacker R., Sell G., Existence of dichotomies and invariant splittings for linear differential equations, Journal of Differential Equations15 (1974) 429-458. Zbl0294.58008MR341458
- [24] Santos N.d., Parameter rigid actions of the Heisenberg group, Ergodic Theory & Dynamical Systems27 (2007) 1719-1735. Zbl1127.37026MR2371593
- [25] Selgrade J., Isolated invariant sets for flows on vector bundles, Transactions of the American Mathematical Society203 (1975) 359-390. Zbl0265.58004MR368080
- [26] Selgrade J., Erratum to “isolated invariant sets for flows on vector bundles”, Transaction of the American Mathematical Society221 (1976) 249. Zbl0329.58016MR413190
- [27] Taubes C., The Seiberg–Witten equations and the Weinstein conjecture, preprint, available at:, http://arxiv.org/abs/math.SG/0611007. Zbl1135.57015MR2350473
- [28] Urzúa Luz R., The first cohomology of affine -actions on tori and applications to rigidity, Bulletin of the Brazilian Mathematical Society34 (2) (2003) 287-302. Zbl1037.37011MR1992643
- [29] Urzúa Luz R., Santos N.d., Cohomology free diffeomorphisms of low-dimension tori, Ergodic Theory & Dynamical Systems18 (1998) 985-1006. Zbl0922.58038MR1645342
- [30] Weinstein A., On the hypotheses of Rabinowitz' periodic orbit theorems, Journal of Differential Equations33 (1979) 353-358. Zbl0388.58020MR543704
- [31] Yoccoz J.-C., Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Annales Scientifiques de l'É.N.S.17 (1984) 333-359. Zbl0595.57027MR777374
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.