Cohomologically rigid vector fields : the Katok conjecture in dimension 3

Alejandro Kocsard

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 4, page 1165-1182
  • ISSN: 0294-1449

How to cite

top

Kocsard, Alejandro. "Cohomologically rigid vector fields : the Katok conjecture in dimension 3." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1165-1182. <http://eudml.org/doc/78884>.

@article{Kocsard2009,
author = {Kocsard, Alejandro},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Katok conjecture; cohomological rigidity; Diophantine vector field},
language = {eng},
number = {4},
pages = {1165-1182},
publisher = {Elsevier},
title = {Cohomologically rigid vector fields : the Katok conjecture in dimension 3},
url = {http://eudml.org/doc/78884},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Kocsard, Alejandro
TI - Cohomologically rigid vector fields : the Katok conjecture in dimension 3
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1165
EP - 1182
LA - eng
KW - Katok conjecture; cohomological rigidity; Diophantine vector field
UR - http://eudml.org/doc/78884
ER -

References

top
  1. [1] Anosov D., Geodesic flows on closed riemannian manifolds of negative curvature, Proceedings of the Steklov Institute of Mathematics90 (1967) 1-235. Zbl0176.19101MR224110
  2. [2] Bowen R., Walters P., Expansive one-parameter flows, Journal of Differential Equations12 (1972) 180-193. Zbl0242.54041MR341451
  3. [3] Doering C., Persistently transitive vector fields on three-dimensional manifolds, in: Dynamical Systems and Bifurcation Theory, Pitman Res. Notes Math. Ser., vol. 160, Longman Sci. Tech., 1987. Zbl0631.58016MR907891
  4. [4] Flaminio L., Forni G., On the cohomological equation for nilflows, Journal of Modern Dynamics1 (1) (2007) 37-60. Zbl1114.37004MR2261071
  5. [5] Forni G., On the Greenfield–Wallach and Katok conjectures, preprint, available at:, http://arxiv.org/abs/0706.3981. Zbl1156.37003
  6. [6] Fuller F., The existence of periodic points, Annals of Mathematics57 (2) (1953) 229-230. Zbl0050.17203MR52764
  7. [7] Greenfield S., Wallach N., Globally hypoelliptic vector fields, Topology12 (1973) 247-253. Zbl0268.58007MR320502
  8. [8] Herman M., Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publications Mathématiques de l'I.H.É.S.49 (1979) 5-233. Zbl0448.58019MR538680
  9. [9] Hurder S., Problems of rigidity of group actions and cocycles, Ergodic Theory & Dynamical Systems5 (1985) 473-484. Zbl0589.22006MR805843
  10. [10] Katok A., Combinatorial Constructions in Ergodic Theory and Dynamical Systems, University Lecture Series, vol. 30, American Mathematical Society, 2003. Zbl1030.37001MR2008435
  11. [11] Katok A., Robinson E., Cocycles, cohomology and combinatorial constructions in ergodic theory, in: Smooth Ergodic Theory and its Applications, Proceedings of the Symposia in Pure Mathematics, vol. 69, 2001. Zbl0994.37003MR1858535
  12. [12] Katok A., Spatzier R., First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Publications Mathématiques de l'I.H.É.S.79 (1994) 131-156. Zbl0819.58027MR1307298
  13. [13] A. Kocsard, Toward the classification of cohomology-free vector fields, Ph.D. thesis, IMPA, 2007. 
  14. [14] Mañé R., Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Transactions of the American Mathematical Society229 (1977) 351-370. Zbl0356.58009MR482849
  15. [15] S. Matsumoto, The parameter rigid flows on 3-manifolds, preprint, 2007. 
  16. [16] Matsumoto S., Mitsumatsu Y., Leafwise cohomology and rigidity of certain Lie group actions, Ergodic Theory & Dynamical Systems23 (2003) 1839-1866. Zbl1052.22020MR2032491
  17. [17] Moser J., On the volume elements on a manifold, Transactions of the American Mathematical Society120 (1965) 186-294. Zbl0141.19407MR182927
  18. [18] Nakayama H., Noda T., Minimal sets and chain recurrent sets of projective flows induced from minimal flows on 3-manifolds, Discrete and Continuous Dynamical Systems12 (4) (2005) 629-638. Zbl1075.37011MR2129363
  19. [19] Oseledets V., A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems, Transactions of the Moscow Mathematical Society19 (1968) 197-231. Zbl0236.93034
  20. [20] Paternain M., Expansive flows and the fundamental group, Boletim da Sociedade Brasileira de Matemática24 (2) (1993) 179-199. Zbl0796.58040MR1254982
  21. [21] Rodríguez Hertz F., Rodríguez Hertz J., Cohomology free systems and the first Betti number, Discrete and Continuous Dynamical Systems15 (2006) 193-196. Zbl1105.37013MR2191392
  22. [22] Rosenberg H., Roussarie R., Weil D., A classification of closed orientable 3-manifolds of rank 2, Annals of Mathematics91 (3) (1970) 449-464. Zbl0195.25404MR270391
  23. [23] Sacker R., Sell G., Existence of dichotomies and invariant splittings for linear differential equations, Journal of Differential Equations15 (1974) 429-458. Zbl0294.58008MR341458
  24. [24] Santos N.d., Parameter rigid actions of the Heisenberg group, Ergodic Theory & Dynamical Systems27 (2007) 1719-1735. Zbl1127.37026MR2371593
  25. [25] Selgrade J., Isolated invariant sets for flows on vector bundles, Transactions of the American Mathematical Society203 (1975) 359-390. Zbl0265.58004MR368080
  26. [26] Selgrade J., Erratum to “isolated invariant sets for flows on vector bundles”, Transaction of the American Mathematical Society221 (1976) 249. Zbl0329.58016MR413190
  27. [27] Taubes C., The Seiberg–Witten equations and the Weinstein conjecture, preprint, available at:, http://arxiv.org/abs/math.SG/0611007. Zbl1135.57015MR2350473
  28. [28] Urzúa Luz R., The first cohomology of affine Z p -actions on tori and applications to rigidity, Bulletin of the Brazilian Mathematical Society34 (2) (2003) 287-302. Zbl1037.37011MR1992643
  29. [29] Urzúa Luz R., Santos N.d., Cohomology free diffeomorphisms of low-dimension tori, Ergodic Theory & Dynamical Systems18 (1998) 985-1006. Zbl0922.58038MR1645342
  30. [30] Weinstein A., On the hypotheses of Rabinowitz' periodic orbit theorems, Journal of Differential Equations33 (1979) 353-358. Zbl0388.58020MR543704
  31. [31] Yoccoz J.-C., Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Annales Scientifiques de l'É.N.S.17 (1984) 333-359. Zbl0595.57027MR777374

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.