Vortex analysis of the periodic Ginzburg-Landau model

Hassen Aydi; Etienne Sandier

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 4, page 1223-1236
  • ISSN: 0294-1449

How to cite

top

Aydi, Hassen, and Sandier, Etienne. "Vortex analysis of the periodic Ginzburg-Landau model." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1223-1236. <http://eudml.org/doc/78887>.

@article{Aydi2009,
author = {Aydi, Hassen, Sandier, Etienne},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {superconductivity; Ginzburg-Landau equations; vortices; periodic boundary conditions},
language = {eng},
number = {4},
pages = {1223-1236},
publisher = {Elsevier},
title = {Vortex analysis of the periodic Ginzburg-Landau model},
url = {http://eudml.org/doc/78887},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Aydi, Hassen
AU - Sandier, Etienne
TI - Vortex analysis of the periodic Ginzburg-Landau model
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1223
EP - 1236
LA - eng
KW - superconductivity; Ginzburg-Landau equations; vortices; periodic boundary conditions
UR - http://eudml.org/doc/78887
ER -

References

top
  1. [1] Abrikosov A., On the magnetic properties of superconductors of the second type, Soviet Phys. JETP5 (1957) 1174-1182. 
  2. [2] Aftalion A., Blanc X., Nier F., Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates, J. Funct. Anal.241 (2) (2006) 661-702. Zbl1118.82004MR2271933
  3. [3] Aftalion A., Serfaty S., Lowest Landau level approach in superconductivity for the Abrikosov lattice close to H c 2 , Selecta Math. (N.S.)13 (2) (2007) 183-202. Zbl1138.82034MR2361092
  4. [4] Alama S., Bronsard L., Sandier E., On the shape of interlayer vortices in the Lawrence–Doniach model, Trans. Amer. Math. Soc.360 (2008) 1-34. Zbl1132.35081MR2341992
  5. [5] Almog Y., On the bifurcation and stability of periodic solutions of the Ginzburg–Landau equations in the plane, SIAM J. Appl. Math.61 (1) (2000) 149-171. Zbl0967.82013MR1776391
  6. [6] Almog Y., Abrikosov lattices in finite domains, Commun. Math. Phys.262 (3) (2006) 677-702. Zbl1106.35089MR2202308
  7. [7] H. Aydi, Doctoral Dissertation, Université Paris-XII, 2004. 
  8. [8] Bethuel F., Brezis H., Hélein F., Ginzburg–Landau Vortices, Progress in Nonlinear Partial Differential Equations and Their Applications, vol. 13, Birkhäuser Boston, Boston, 1994. Zbl0802.35142MR1269538
  9. [9] Bethuel F., Rivière T., Vortices for a variational problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire12 (3) (1995) 243-303. Zbl0842.35119MR1340265
  10. [10] Brandt E.H., The flux-line lattice in superconductors, Rep. Prog. Phys.58 (1995) 1465-1594. 
  11. [11] Comte M., Mironescu P., The behavior of a Ginzburg–Landau minimizer near its zeroes, Calc. Var. Partial Differential Equations4 (4) (1996) 323-340. Zbl0869.35036MR1393268
  12. [12] Doria M.M., Gubernatis J.E., Rainer D., Solving the Ginzburg–Landau equations by simulated annealing, Phys. Rev. B41 (1990) 6335-6340. 
  13. [13] Du Q., Gunzburger M.D., Peterson J.S., Modeling and analysis of a periodic Ginzburg–Landau model for type-II superconductors, SIAM J. Appl. Math.53 (3) (1993) 689-717. Zbl0784.35107MR1218380
  14. [14] Dutour M., Bifurcation vers l'état d'Abrikosov et diagramme de phase, Thèse Orsay. Available online at:, http://xxx.lanl.gov/abs/math-ph/9912011. 
  15. [15] Jerrard R.L., Lower bounds for generalized Ginzburg–Landau functionals, SIAM J. Math. Anal.30 (4) (1999) 721-746. Zbl0928.35045MR1684723
  16. [16] Jerrard R.L., Soner H.M., The Jacobian and the Ginzburg–Landau energy, Calc. Var. Partial Differential Equations14 (2) (2002) 151-191. Zbl1034.35025MR1890398
  17. [17] Kleiner W.H., Roth L.M., Autler S.H., Bulk solution of Ginzburg–Landau equations for type II superconductors: Upper critical field region, Phys. Rev.133 (1964) A1226-A1227. Zbl0115.45605
  18. [18] Lasher G., Series solution of the Ginzburg–Landau equations for the Abrikosov mixed state, Phys. Rev. 2140 (1965) A523-A528. MR187819
  19. [19] Mironescu P., Les minimiseurs locaux pour l'équation de Ginzburg–Landau sont à symétrie radiale, C. R. Acad. Sci. Paris, Ser. I323 (6) (1996) 593-598. Zbl0858.35038MR1411048
  20. [20] Odeh F., Existence and bifurcation theorems for the Ginzburg–Landau equations, J. Math. Phys.8 (1967) 2351-2356. 
  21. [21] Sandier E., Serfaty S., On the energy of type-II superconductors in the mixed phase, Rev. Math. Phys.12 (9) (2000) 1219-1257. Zbl0964.49006MR1794239
  22. [22] Sandier E., Serfaty S., Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and Their Applications, vol. 70, Birkhäuser Boston Inc., Boston, MA, 2007. Zbl1112.35002MR2279839
  23. [23] E. Sandier, S. Serfaty, From the Ginzburg–Landau model to vortex lattice problems, in preparation. Zbl1252.35034
  24. [24] Serfaty S., Local minimizers for the Ginzburg–Landau energy near critical magnetic field, part I, Comm. Contemp. Math.1 (2) (1999) 213-254, part II, 295–333. Zbl0964.49005MR1696100
  25. [25] Tinkham M., Introduction to Superconductivity, second ed., McGraw–Hill, New York, 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.