A note on constant geodesic curvature curves on surfaces

Taoniu Sun

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 1569-1584
  • ISSN: 0294-1449

How to cite

top

Sun, Taoniu. "A note on constant geodesic curvature curves on surfaces." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1569-1584. <http://eudml.org/doc/78903>.

@article{Sun2009,
author = {Sun, Taoniu},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {constant geodesic curvature; critical point; Gauss curvature},
language = {eng},
number = {5},
pages = {1569-1584},
publisher = {Elsevier},
title = {A note on constant geodesic curvature curves on surfaces},
url = {http://eudml.org/doc/78903},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Sun, Taoniu
TI - A note on constant geodesic curvature curves on surfaces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1569
EP - 1584
LA - eng
KW - constant geodesic curvature; critical point; Gauss curvature
UR - http://eudml.org/doc/78903
ER -

References

top
  1. [1] do Carmo M., Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976. Zbl0326.53001MR394451
  2. [2] Druet O., Sharp local isoperimetric inequalities involving the scalar curvature, Proc. Amer. Math. Soc.130 (8) (2002) 2351-2361. Zbl1067.53026MR1897460
  3. [3] F. Pacard, X. Xu, Constant mean curvature spheres in Riemannian manifolds, preprint, 2007. Zbl1165.53038MR2481045
  4. [4] Peng C.K., Chen Q., Differential Geometry, Higher Education Press, 2002. 
  5. [5] Ritoré M., Ros A., The space of index one minimal surfaces and stable constant mean curvature surfaces embedded in flat three manifolds, Trans. Amer. Math. Soc.348 (1) (January 1996). Zbl0867.53007MR1322955
  6. [6] Rosenberg H., Constant mean curvature surfaces in homogeneously regular 3-manifolds, Bull. Austral. Math. Soc.74 (2) (2006) 227-238. Zbl1104.53057MR2260491
  7. [7] Schoen R., Yau S.T., Lectures on Differential Geometry, International Press, 1994. Zbl0830.53001MR1333601
  8. [8] Willmore T.J., Riemannian Geometry, Oxford Univ. Press, NY, 1993. Zbl0797.53002MR1261641
  9. [9] Ye R., Foliation by constant mean curvature spheres, Pacific J. Math.147 (2) (1991) 381-396. Zbl0722.53022MR1084717

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.