An optimal partial regularity result for minimizers of an intrinsically defined second-order functional

Christoph Scheven

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 1585-1605
  • ISSN: 0294-1449

How to cite

top

Scheven, Christoph. "An optimal partial regularity result for minimizers of an intrinsically defined second-order functional." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1585-1605. <http://eudml.org/doc/78904>.

@article{Scheven2009,
author = {Scheven, Christoph},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {biharmonic maps; defect measure; dimension reduction; intrinsic bi-energy; partial regularity},
language = {eng},
number = {5},
pages = {1585-1605},
publisher = {Elsevier},
title = {An optimal partial regularity result for minimizers of an intrinsically defined second-order functional},
url = {http://eudml.org/doc/78904},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Scheven, Christoph
TI - An optimal partial regularity result for minimizers of an intrinsically defined second-order functional
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1585
EP - 1605
LA - eng
KW - biharmonic maps; defect measure; dimension reduction; intrinsic bi-energy; partial regularity
UR - http://eudml.org/doc/78904
ER -

References

top
  1. [1] Adams D., A note on Riesz potentials, Duke Math. J.42 (1975) 765-778. Zbl0336.46038MR458158
  2. [2] Avellaneda M., Lin F.H., Fonctions quasi affines et minimisation de u p , C. R. Acad. Sci. Paris Sér. I306 (1988) 355-358. MR934618
  3. [3] Chang A., Wang L., Yang P., A regularity theory of biharmonic maps, Comm. Pure Appl. Math.52 (9) (1999) 1113-1137. Zbl0953.58013MR1692148
  4. [4] A. Gastel, C. Scheven, Regularity of polyharmonic maps in the critical dimension, submitted for publication. Zbl1183.58010
  5. [5] Hardy G., Littlewood J., Pólya G., Inequalities, Cambridge University Press, 1964. Zbl0047.05302JFM60.0169.01
  6. [6] Kobayashi S., Nomizu K., Foundations of Differential Geometry II, Interscience Publishers, New York, 1969. Zbl0175.48504
  7. [7] Mattila P., Geometry of Sets and Measures in Euclidean Spaces – Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, 1995. Zbl0819.28004MR1333890
  8. [8] Montaldo S., Oniciuc C., A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina47 (2006) 1-22. Zbl1140.58004MR2301373
  9. [9] Moser R., The blow-up behavior of the biharmonic map heat flow in four dimensions, IMRP Int. Math. Res. Pap.2005 (2005) 351-402. Zbl1124.53028MR2204844
  10. [10] R. Moser, A variational problem pertaining to biharmonic maps, preprint. Zbl1154.58007MR2450176
  11. [11] Simon L., Lectures on Geometric Measure Theory, Proc. of Centre for Math. Anal., vol. 3, Australian National Univ., 1983. Zbl0546.49019MR756417
  12. [12] Schoen R., Analytic aspects of the harmonic map problem, in: Chern S.S. (Ed.), Seminar on Nonlinear Partial Differential Equations, Springer, 1984, pp. 321-358. Zbl0551.58011MR765241
  13. [13] Scheven C., Dimension reduction for the singular set of biharmonic maps, Adv. Calc. Var.1 (2008) 53-91. Zbl1152.58011MR2402212
  14. [14] Strzelecki P., On biharmonic maps and their generalizations, Calc. Var.18 (4) (2003) 401-432. Zbl1106.35021MR2020368
  15. [15] Struwe M., Partial regularity for biharmonic maps, revisited, Calc. Var.33 (2) (2008) 249-262. Zbl1151.58011MR2413109
  16. [16] Tao T., Tian G., A singularity removal theorem for Yang–Mills fields in higher dimensions, J. Amer. Math. Soc.17 (2004) 557-593. Zbl1086.53043MR2053951
  17. [17] Wang C., Remarks on biharmonic maps into spheres, Calc. Var.21 (3) (2004) 221-242. Zbl1060.58011MR2094320
  18. [18] Wang C., Biharmonic maps from R 4 into a Riemannian manifold, Math. Z.247 (1) (2004) 65-87. Zbl1064.58016MR2054520
  19. [19] Wang C., Stationary biharmonic maps from R m into a Riemannian manifold, Comm. Pure Appl. Math.57 (4) (2004) 419-444. Zbl1055.58008MR2026177
  20. [20] Ziemer W., Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, vol. 120, Springer, New York, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.