An optimal partial regularity result for minimizers of an intrinsically defined second-order functional
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 5, page 1585-1605
- ISSN: 0294-1449
Access Full Article
topHow to cite
topScheven, Christoph. "An optimal partial regularity result for minimizers of an intrinsically defined second-order functional." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1585-1605. <http://eudml.org/doc/78904>.
@article{Scheven2009,
author = {Scheven, Christoph},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {biharmonic maps; defect measure; dimension reduction; intrinsic bi-energy; partial regularity},
language = {eng},
number = {5},
pages = {1585-1605},
publisher = {Elsevier},
title = {An optimal partial regularity result for minimizers of an intrinsically defined second-order functional},
url = {http://eudml.org/doc/78904},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Scheven, Christoph
TI - An optimal partial regularity result for minimizers of an intrinsically defined second-order functional
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1585
EP - 1605
LA - eng
KW - biharmonic maps; defect measure; dimension reduction; intrinsic bi-energy; partial regularity
UR - http://eudml.org/doc/78904
ER -
References
top- [1] Adams D., A note on Riesz potentials, Duke Math. J.42 (1975) 765-778. Zbl0336.46038MR458158
- [2] Avellaneda M., Lin F.H., Fonctions quasi affines et minimisation de , C. R. Acad. Sci. Paris Sér. I306 (1988) 355-358. MR934618
- [3] Chang A., Wang L., Yang P., A regularity theory of biharmonic maps, Comm. Pure Appl. Math.52 (9) (1999) 1113-1137. Zbl0953.58013MR1692148
- [4] A. Gastel, C. Scheven, Regularity of polyharmonic maps in the critical dimension, submitted for publication. Zbl1183.58010
- [5] Hardy G., Littlewood J., Pólya G., Inequalities, Cambridge University Press, 1964. Zbl0047.05302JFM60.0169.01
- [6] Kobayashi S., Nomizu K., Foundations of Differential Geometry II, Interscience Publishers, New York, 1969. Zbl0175.48504
- [7] Mattila P., Geometry of Sets and Measures in Euclidean Spaces – Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, 1995. Zbl0819.28004MR1333890
- [8] Montaldo S., Oniciuc C., A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina47 (2006) 1-22. Zbl1140.58004MR2301373
- [9] Moser R., The blow-up behavior of the biharmonic map heat flow in four dimensions, IMRP Int. Math. Res. Pap.2005 (2005) 351-402. Zbl1124.53028MR2204844
- [10] R. Moser, A variational problem pertaining to biharmonic maps, preprint. Zbl1154.58007MR2450176
- [11] Simon L., Lectures on Geometric Measure Theory, Proc. of Centre for Math. Anal., vol. 3, Australian National Univ., 1983. Zbl0546.49019MR756417
- [12] Schoen R., Analytic aspects of the harmonic map problem, in: Chern S.S. (Ed.), Seminar on Nonlinear Partial Differential Equations, Springer, 1984, pp. 321-358. Zbl0551.58011MR765241
- [13] Scheven C., Dimension reduction for the singular set of biharmonic maps, Adv. Calc. Var.1 (2008) 53-91. Zbl1152.58011MR2402212
- [14] Strzelecki P., On biharmonic maps and their generalizations, Calc. Var.18 (4) (2003) 401-432. Zbl1106.35021MR2020368
- [15] Struwe M., Partial regularity for biharmonic maps, revisited, Calc. Var.33 (2) (2008) 249-262. Zbl1151.58011MR2413109
- [16] Tao T., Tian G., A singularity removal theorem for Yang–Mills fields in higher dimensions, J. Amer. Math. Soc.17 (2004) 557-593. Zbl1086.53043MR2053951
- [17] Wang C., Remarks on biharmonic maps into spheres, Calc. Var.21 (3) (2004) 221-242. Zbl1060.58011MR2094320
- [18] Wang C., Biharmonic maps from into a Riemannian manifold, Math. Z.247 (1) (2004) 65-87. Zbl1064.58016MR2054520
- [19] Wang C., Stationary biharmonic maps from into a Riemannian manifold, Comm. Pure Appl. Math.57 (4) (2004) 419-444. Zbl1055.58008MR2026177
- [20] Ziemer W., Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, vol. 120, Springer, New York, 1989. Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.