A regularity criterion for the dissipative quasi-geostrophic equations

Hongjie Dong; Nataša Pavlović

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 1607-1619
  • ISSN: 0294-1449

How to cite

top

Dong, Hongjie, and Pavlović, Nataša. "A regularity criterion for the dissipative quasi-geostrophic equations." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1607-1619. <http://eudml.org/doc/78905>.

@article{Dong2009,
author = {Dong, Hongjie, Pavlović, Nataša},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {regularity criteria; quasi-geostrophic equations},
language = {eng},
number = {5},
pages = {1607-1619},
publisher = {Elsevier},
title = {A regularity criterion for the dissipative quasi-geostrophic equations},
url = {http://eudml.org/doc/78905},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Dong, Hongjie
AU - Pavlović, Nataša
TI - A regularity criterion for the dissipative quasi-geostrophic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1607
EP - 1619
LA - eng
KW - regularity criteria; quasi-geostrophic equations
UR - http://eudml.org/doc/78905
ER -

References

top
  1. [1] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, preprint. Zbl1204.35063
  2. [2] Chae D., The quasi-geostrophic equation in the Triebel–Lizorkin spaces, Nonlinearity16 (2) (2003) 479-495. Zbl1029.35006MR1958612
  3. [3] Chae D., On the regularity conditions for the dissipative quasi-geostrophic equations, SIAM J. Math. Anal.37 (5) (2006) 1649-1656. Zbl1141.76010MR2215601
  4. [4] Chae D., Lee J., Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Commun. Math. Phys.233 (2003) 297-311. Zbl1019.86002MR1962043
  5. [5] Chemin J.-Y., Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, J. Anal. Math.77 (1999) 27-50, (in French). Zbl0938.35125MR1753481
  6. [6] Chen Q., Miao C., Zhang Z., A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation, Commun. Math. Phys.271 (3) (2007) 821-838. Zbl1142.35069MR2291797
  7. [7] Cheskidov A., Shvydkoy R., On the regularity of weak solutions of the 3D Navier–Stokes equations in B , - 1 , preprint, arXiv:math.AP/0708.3067. MR2564471
  8. [8] Constantin P., Cordoba D., Wu J., On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J.50 (2001) 97-107. Zbl0989.86004MR1855665
  9. [9] Constantin P., Majda A.J., Tabak E., Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity7 (6) (1994) 1495-1533. Zbl0809.35057MR1304437
  10. [10] Constantin P., Wu J., Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal.30 (1999) 937-948. Zbl0957.76093MR1709781
  11. [11] P. Constantin, J. Wu, Hölder continuity of solutions of super-critical dissipative hydrodynamic transport equations, Ann. I. H. Poincaré – AN (2007), doi:10.1016/j.anihpc.2007.10.002. Zbl1163.76010
  12. [12] P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. I. H. Poincaré – AN (2007), doi:10.1016/j.anihpc.2007.10.001. Zbl1149.76052
  13. [13] Danchin R., Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A133 (6) (2003) 1311-1334. Zbl1050.76013MR2027648
  14. [14] Dong B.-Q., Chen Z.-M., A remark on regularity criterion for the dissipative quasi-geostrophic equations, J. Math. Anal. Appl. (2007) 1212-1217. Zbl1154.76339MR2296919
  15. [15] H. Dong, Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness, 2007, submitted for publication. 
  16. [16] Dong H., Du D., Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst.21 (4) (2008) 1095-1101. Zbl1141.35436MR2399451
  17. [17] H. Dong, D. Li, On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces, 2007, submitted for publication. Zbl1193.35151
  18. [18] Escauriaza L., Seregin G., Šverak V., L 3 , -solutions of the Navier–Stokes equations and backward uniqueness, Russian Math. Surveys58 (2003). Zbl1064.35134MR1992563
  19. [19] Giga Y., Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system, J. Differential Equations61 (1986) 186-212. Zbl0577.35058MR833416
  20. [20] Hmidi T., Keraani S., Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces, Adv. Math.214 (2) (2007) 618-638. Zbl1119.76070MR2349714
  21. [21] Ju N., The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Commun. Math. Phys.255 (1) (2005) 161-181. Zbl1088.37049MR2123380
  22. [22] Kiselev A., Nazarov F., Volberg A., Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math.167 (3) (2007) 445-453. Zbl1121.35115MR2276260
  23. [23] Ladyzhenskaya O.A., On uniqueness and smoothness of generalized solutions to the Navier–Stokes equations, Zapiski Nauchn. Seminar. POMI5 (1967) 169-185. Zbl0194.12805MR236541
  24. [24] Miura H., Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space, Commun. Math. Phys.267 (1) (2006) 141-157. Zbl1113.76029MR2238907
  25. [25] Pedlosky J., Geophysical Fluid Dynamics, Springer, New York, 1987. Zbl0713.76005
  26. [26] Prodi G., Un teorema di unicità per el equazioni di Navier–Stokes, Ann. Mat. Pura Appl.48 (1959) 173-182. Zbl0148.08202MR126088
  27. [27] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis, University of Chicago, 1995. 
  28. [28] Serrin J., On the interior regularity of weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal.9 (1962) 187-195. Zbl0106.18302MR136885
  29. [29] Wu J., Global solutions of the 2D dissipative quasi-geostrophic equations in Besov spaces, SIAM J. Math. Anal.36 (3) (2004/2005) 1014-1030, (electronic). Zbl1083.76064MR2111923
  30. [30] Wu J., Lower bounds for an integral involving fractional Laplacians and the generalized Navier–Stokes equations in Besov spaces, Commun. Math. Phys.263 (3) (2006) 803-831. Zbl1104.35037MR2211825
  31. [31] Wu J., Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation, Nonlinear Anal.67 (2007) 3013-3036. Zbl1122.76014MR2347594

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.