A regularity criterion for the dissipative quasi-geostrophic equations
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 5, page 1607-1619
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDong, Hongjie, and Pavlović, Nataša. "A regularity criterion for the dissipative quasi-geostrophic equations." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1607-1619. <http://eudml.org/doc/78905>.
@article{Dong2009,
author = {Dong, Hongjie, Pavlović, Nataša},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {regularity criteria; quasi-geostrophic equations},
language = {eng},
number = {5},
pages = {1607-1619},
publisher = {Elsevier},
title = {A regularity criterion for the dissipative quasi-geostrophic equations},
url = {http://eudml.org/doc/78905},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Dong, Hongjie
AU - Pavlović, Nataša
TI - A regularity criterion for the dissipative quasi-geostrophic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1607
EP - 1619
LA - eng
KW - regularity criteria; quasi-geostrophic equations
UR - http://eudml.org/doc/78905
ER -
References
top- [1] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, preprint. Zbl1204.35063
- [2] Chae D., The quasi-geostrophic equation in the Triebel–Lizorkin spaces, Nonlinearity16 (2) (2003) 479-495. Zbl1029.35006MR1958612
- [3] Chae D., On the regularity conditions for the dissipative quasi-geostrophic equations, SIAM J. Math. Anal.37 (5) (2006) 1649-1656. Zbl1141.76010MR2215601
- [4] Chae D., Lee J., Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Commun. Math. Phys.233 (2003) 297-311. Zbl1019.86002MR1962043
- [5] Chemin J.-Y., Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, J. Anal. Math.77 (1999) 27-50, (in French). Zbl0938.35125MR1753481
- [6] Chen Q., Miao C., Zhang Z., A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation, Commun. Math. Phys.271 (3) (2007) 821-838. Zbl1142.35069MR2291797
- [7] Cheskidov A., Shvydkoy R., On the regularity of weak solutions of the 3D Navier–Stokes equations in , preprint, arXiv:math.AP/0708.3067. MR2564471
- [8] Constantin P., Cordoba D., Wu J., On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J.50 (2001) 97-107. Zbl0989.86004MR1855665
- [9] Constantin P., Majda A.J., Tabak E., Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity7 (6) (1994) 1495-1533. Zbl0809.35057MR1304437
- [10] Constantin P., Wu J., Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal.30 (1999) 937-948. Zbl0957.76093MR1709781
- [11] P. Constantin, J. Wu, Hölder continuity of solutions of super-critical dissipative hydrodynamic transport equations, Ann. I. H. Poincaré – AN (2007), doi:10.1016/j.anihpc.2007.10.002. Zbl1163.76010
- [12] P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. I. H. Poincaré – AN (2007), doi:10.1016/j.anihpc.2007.10.001. Zbl1149.76052
- [13] Danchin R., Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A133 (6) (2003) 1311-1334. Zbl1050.76013MR2027648
- [14] Dong B.-Q., Chen Z.-M., A remark on regularity criterion for the dissipative quasi-geostrophic equations, J. Math. Anal. Appl. (2007) 1212-1217. Zbl1154.76339MR2296919
- [15] H. Dong, Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness, 2007, submitted for publication.
- [16] Dong H., Du D., Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst.21 (4) (2008) 1095-1101. Zbl1141.35436MR2399451
- [17] H. Dong, D. Li, On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces, 2007, submitted for publication. Zbl1193.35151
- [18] Escauriaza L., Seregin G., Šverak V., -solutions of the Navier–Stokes equations and backward uniqueness, Russian Math. Surveys58 (2003). Zbl1064.35134MR1992563
- [19] Giga Y., Solutions for semilinear parabolic equations in and regularity of weak solutions of the Navier–Stokes system, J. Differential Equations61 (1986) 186-212. Zbl0577.35058MR833416
- [20] Hmidi T., Keraani S., Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces, Adv. Math.214 (2) (2007) 618-638. Zbl1119.76070MR2349714
- [21] Ju N., The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Commun. Math. Phys.255 (1) (2005) 161-181. Zbl1088.37049MR2123380
- [22] Kiselev A., Nazarov F., Volberg A., Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math.167 (3) (2007) 445-453. Zbl1121.35115MR2276260
- [23] Ladyzhenskaya O.A., On uniqueness and smoothness of generalized solutions to the Navier–Stokes equations, Zapiski Nauchn. Seminar. POMI5 (1967) 169-185. Zbl0194.12805MR236541
- [24] Miura H., Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space, Commun. Math. Phys.267 (1) (2006) 141-157. Zbl1113.76029MR2238907
- [25] Pedlosky J., Geophysical Fluid Dynamics, Springer, New York, 1987. Zbl0713.76005
- [26] Prodi G., Un teorema di unicità per el equazioni di Navier–Stokes, Ann. Mat. Pura Appl.48 (1959) 173-182. Zbl0148.08202MR126088
- [27] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis, University of Chicago, 1995.
- [28] Serrin J., On the interior regularity of weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal.9 (1962) 187-195. Zbl0106.18302MR136885
- [29] Wu J., Global solutions of the 2D dissipative quasi-geostrophic equations in Besov spaces, SIAM J. Math. Anal.36 (3) (2004/2005) 1014-1030, (electronic). Zbl1083.76064MR2111923
- [30] Wu J., Lower bounds for an integral involving fractional Laplacians and the generalized Navier–Stokes equations in Besov spaces, Commun. Math. Phys.263 (3) (2006) 803-831. Zbl1104.35037MR2211825
- [31] Wu J., Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation, Nonlinear Anal.67 (2007) 3013-3036. Zbl1122.76014MR2347594
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.