On the pullback equation
S. Bandyopadhyay; B. Dacorogna
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 5, page 1717-1741
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBandyopadhyay, S., and Dacorogna, B.. "On the pullback equation ${\phi }^{*}\left(g\right)=f$." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1717-1741. <http://eudml.org/doc/78910>.
@article{Bandyopadhyay2009,
author = {Bandyopadhyay, S., Dacorogna, B.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Darboux theorem; symplectic forms; Hölder regularity},
language = {eng},
number = {5},
pages = {1717-1741},
publisher = {Elsevier},
title = {On the pullback equation $\{\phi \}^\{*\}\left(g\right)=f$},
url = {http://eudml.org/doc/78910},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Bandyopadhyay, S.
AU - Dacorogna, B.
TI - On the pullback equation ${\phi }^{*}\left(g\right)=f$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1717
EP - 1741
LA - eng
KW - Darboux theorem; symplectic forms; Hölder regularity
UR - http://eudml.org/doc/78910
ER -
References
top- [1] Abraham R., Marsden J.E., Ratiu T., Manifolds, Tensor Analysis, and Applications, second ed., Springer-Verlag, New York, 1988. Zbl0875.58002MR960687
- [2] Banyaga A., Formes-volume sur les variétés à bord, Enseignement Math.20 (1974) 127-131. Zbl0281.58001MR358649
- [3] Burago D., Kleiner B., Separated nets in Euclidean space and Jacobian of biLipschitz maps, Geom. Funct. Anal.8 (1998) 273-282. Zbl0902.26004MR1616135
- [4] Dacorogna B., A relaxation theorem and its applications to the equilibrium of gases, Arch. Ration. Mech. Anal.77 (1981) 359-386. Zbl0492.49002MR642553
- [5] Dacorogna B., Existence and regularity of solutions of with Dirichlet boundary conditions, in: Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N.Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 67-82. Zbl1148.35306MR1970605
- [6] Dacorogna B., Direct Methods in the Calculus of Variations, second ed., Springer-Verlag, New York, 2007. Zbl1140.49001MR990890
- [7] Dacorogna B., Moser J., On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire7 (1990) 1-26. Zbl0707.35041MR1046081
- [8] Duff G.F., Spencer D.C., Harmonic tensors on Riemannian manifolds with boundary, Ann. of Math.56 (1952) 128-156. Zbl0049.18901MR48137
- [9] Hörmander L., The boundary problems of physical geodesy, Arch. Ration. Mech. Anal.62 (1976) 1-52. Zbl0331.35020MR602181
- [10] Kress R., Potentialtheoretische Randwertprobleme bei Tensorfeldern beliebiger Dimension und beliebigen Ranges, Arch. Ration. Mech. Anal.47 (1972) 59-80. Zbl0238.31010MR361131
- [11] McDuff D., Salamon D., Introduction to Symplectic Topology, second ed., Oxford Science Publications, Oxford, 1998. Zbl0844.58029MR1702941
- [12] McMullen C.T., Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal.8 (1998) 304-314. Zbl0941.37030MR1616159
- [13] Moser J., On the volume elements on a manifold, Trans. Amer. Math. Soc.120 (1965) 286-294. Zbl0141.19407MR182927
- [14] Reimann H.M., Harmonische Funktionen und Jacobi-Determinanten von Diffeomorphismen, Comment. Math. Helv.47 (1972) 397-408. Zbl0249.57016MR315064
- [15] Rivière T., Ye D., Resolutions of the prescribed volume form equation, NoDEA Nonlinear Differential Equations Appl.3 (1996) 323-369. Zbl0857.35025MR1404587
- [16] L. Tartar, unpublished, 1978.
- [17] Taylor M.E., Partial Differential Equations, vol. 1, Springer-Verlag, New York, 1996. Zbl0869.35003
- [18] Ye D., Prescribing the Jacobian determinant in Sobolev spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994) 275-296. Zbl0834.35047MR1277896
- [19] Zehnder E., Note on smoothing symplectic and volume preserving diffeomorphisms, in: Lecture Notes in Mathematics, vol. 597, Springer-Verlag, Berlin, 1976, pp. 828-855. Zbl0363.58004MR467846
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.