Global well-posedness and scattering for the defocusing H 1 2 -subcritical Hartree equation in R d

Changxing Miao; Guixiang Xu; Lifeng Zhao

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 1831-1852
  • ISSN: 0294-1449

How to cite

top

Miao, Changxing, Xu, Guixiang, and Zhao, Lifeng. "Global well-posedness and scattering for the defocusing ${H}^{\frac{1}{2}}$-subcritical Hartree equation in ${R}^{d}$." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1831-1852. <http://eudml.org/doc/78915>.

@article{Miao2009,
author = {Miao, Changxing, Xu, Guixiang, Zhao, Lifeng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {almost interaction Morawetz estimate; well-posedness; Hartree equation; I-method; uniform bound},
language = {eng},
number = {5},
pages = {1831-1852},
publisher = {Elsevier},
title = {Global well-posedness and scattering for the defocusing $\{H\}^\{\frac\{1\}\{2\}\}$-subcritical Hartree equation in $\{R\}^\{d\}$},
url = {http://eudml.org/doc/78915},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Miao, Changxing
AU - Xu, Guixiang
AU - Zhao, Lifeng
TI - Global well-posedness and scattering for the defocusing ${H}^{\frac{1}{2}}$-subcritical Hartree equation in ${R}^{d}$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1831
EP - 1852
LA - eng
KW - almost interaction Morawetz estimate; well-posedness; Hartree equation; I-method; uniform bound
UR - http://eudml.org/doc/78915
ER -

References

top
  1. [1] Cazenave T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University Courant Institute of Mathematical Sciences, New York, 2003. Zbl1055.35003MR2002047
  2. [2] J. Colliander, M. Grillakis, N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on R 2 , IMRN 23 (2007), Art. ID rnm090, 30 pp. Zbl1142.35085MR2377216
  3. [3] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Global existence and scattering for rough solutions to a nonlinear Schrödinger equations on R 3 , Comm. Pure Appl. Math.57 (8) (2004) 987-1014. Zbl1060.35131MR2053757
  4. [4] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Resonant decompositions and the I-method for cubic nonlinear Schrödinger on R 2 , Discrete Contin. Dynam. Systems21 (3) (2008) 665-686. Zbl1147.35095MR2399431
  5. [5] Chae M., Hong S., Kim J., Yang C.W., Scattering theory below energy for a class of Hartree type equations, Comm. Partial Differential Equations33 (2008) 321-348. Zbl1185.35249MR2398232
  6. [6] De Silva D., Pavlovic N., Staffilani G., Tzirakis N., Global well-posedness and polynomial bounds for the defocusing L 2 -critical nonlinear Schrödinger equation in R , Comm. Partial Differential Equations33 (2008) 1395-1429. Zbl1155.35310MR2450163
  7. [7] Ginibre J., Ozawa T., Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n 2 , Comm. Math. Phys.151 (1993) 619-645. Zbl0776.35070MR1207269
  8. [8] Ginibre J., Velo G., Scattering theory in the energy space for a class of Hartree equations, in: Nonlinear Wave Equations, Providence, RI, 1998, Contemp. Math., vol. 263, Amer. Math. Soc., Providence, RI, 2000, pp. 29-60. Zbl0966.35095MR1777634
  9. [9] Ginibre J., Velo G., Long range scattering and modified wave operators for some Hartree type equations, Rev. Math. Phys.12 (3) (2000) 361-429. Zbl1044.35041MR1755906
  10. [10] Ginibre J., Velo G., Long range scattering and modified wave operators for some Hartree type equations II, Ann. Inst. H. Poincaré1 (4) (2000) 753-800. Zbl1024.35084MR1785187
  11. [11] Ginibre J., Velo G., Long range scattering and modified wave operators for some Hartree type equations. III: Gevrey spaces and low dimensions, J. Differential Equations175 (2) (2001) 415-501. Zbl0991.35057MR1855975
  12. [12] A. Grünrock, New applications of the Fourier restriction norm method to wellposedness problems for nonlinear evolution equations, Dissertation Univ. Wuppertal, 2002. 
  13. [13] Hayashi N., Tsutsumi Y., Scattering theory for the Hartree equations, Ann. Inst. H. Poincaré Phys. Théor.61 (1987) 187-213. Zbl0634.35059MR887147
  14. [14] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math.120 (5) (1998) 955-980. Zbl0922.35028MR1646048
  15. [15] Li D., Miao C., Zhang X., The focusing energy-critical Hartree equation, J. Differential Equations246 (3) (2009) 1139-1163. Zbl1155.35421MR2474589
  16. [16] Lin J.E., Strauss W.A., Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Funct. Anal.30 (2) (1978) 245-263. Zbl0395.35070MR515228
  17. [17] Miao C., H m -modified wave operator for nonlinear Hartree equation in the space dimensions n 2 , Acta Math. Sinica13 (2) (1997) 247-268. Zbl0877.35089MR1481805
  18. [18] Miao C., Xu G., Zhao L., The Cauchy problem of the Hartree equation. Dedicated to Professor Li Daqian on the occasion of seventieth birthday, J. Partial Differential Equations21 (2008) 22-44. Zbl1174.35099MR2394047
  19. [19] Miao C., Xu G., Zhao L., Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data, J. Funct. Anal.253 (2007) 605-627. Zbl1136.35092MR2370092
  20. [20] Miao C., Xu G., Zhao L., Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in R 1 + n , arXiv:0707.3254. Zbl1252.35235
  21. [21] Miao C., Xu G., Zhao L., Global well-posedness and scattering for the mass-critical Hartree equation with radial data, J. Math. Pures Appl.91 (2009) 49-79. Zbl1154.35078MR2487900
  22. [22] Nakanishi K., Energy scattering for Hartree equations, Math. Res. Lett.6 (1999) 107-118. Zbl0949.35104MR1682697
  23. [23] Nawa H., Ozawa T., Nonlinear scattering with nonlocal interactions, Comm. Math. Phys.146 (1992) 259-275. Zbl0748.35046MR1165183
  24. [24] Tao T., Multilinear weighted convolution of L 2 functions, and applications to non-linear dispersive equations, Amer. J. Math.123 (2001) 839-908. Zbl0998.42005MR1854113
  25. [25] Tao T., Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conf. Ser. in Math., vol. 106, Amer. Math. Soc., 2006. Zbl1106.35001MR2233925
  26. [26] http://tosio.math.toronto.edu/wiki/index.php/Main_Page. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.