Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data

Nikolaos Bournaveas; Vincent Calvez

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 1871-1895
  • ISSN: 0294-1449

How to cite

top

Bournaveas, Nikolaos, and Calvez, Vincent. "Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1871-1895. <http://eudml.org/doc/78917>.

@article{Bournaveas2009,
author = {Bournaveas, Nikolaos, Calvez, Vincent},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {chemotaxis; kinetic model; blow-up; global existence; drift-diffusion limit},
language = {eng},
number = {5},
pages = {1871-1895},
publisher = {Elsevier},
title = {Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data},
url = {http://eudml.org/doc/78917},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Bournaveas, Nikolaos
AU - Calvez, Vincent
TI - Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1871
EP - 1895
LA - eng
KW - chemotaxis; kinetic model; blow-up; global existence; drift-diffusion limit
UR - http://eudml.org/doc/78917
ER -

References

top
  1. [1] Blanchet A., Dolbeault J., Perthame B., Two-dimensional Keller–Segel model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations44 (2006), 32 pp. (electronic). Zbl1112.35023MR2226917
  2. [2] Bobylev A.V., Carrillo J.A., Gamba I.M., On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Stat. Phys.98 (2000) 743-773, J. Stat. Phys.103 (2001) 1137-1138, erratum. Zbl1126.82323MR1749231
  3. [3] Bolley F., Carrillo J.A., Tanaka theorem for inelastic Maxwell models, Comm. Math. Phys.276 (2007) 287-314. Zbl1136.82033MR2346391
  4. [4] Bournaveas N., Calvez V., Gutiérrez S., Perthame B., Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates, Comm. Partial Differential Equations33 (2008) 79-95. Zbl1137.92004MR2398220
  5. [5] Bournaveas N., Calvez V., Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables, Kinetic and Related Models1 (2008) 29-48. Zbl1140.92002MR2383714
  6. [6] Calvez V., Corrias L., The parabolic–parabolic Keller–Segel model in R 2 , Commun. Math. Sci.6 (2008) 417-447. Zbl1149.35360MR2433703
  7. [7] Calvez V., Perthame B., Sharifi tabar M., Modified Keller–Segel system and critical mass for the log interaction kernel, in: Stochastic Analysis and Partial Differential Equations, Contemp. Math., vol. 429, Amer. Math. Soc., Providence, RI, 2007, pp. 45-62. Zbl1126.35077MR2391528
  8. [8] Castella F., Perthame B., Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris Sér. I Math.322 (1996) 535-540. Zbl0848.35095MR1383431
  9. [9] Chalub F.A.C.C., Dolak-Struss Y., Markowich P.A., Oelz D., Schmeiser C., Soreff A., Model hierarchies for cell aggregation by chemotaxis, Math. Models Methods Appl. Sci.16 (2006) 1173-1197. Zbl1094.92009MR2250124
  10. [10] Chalub F.A.C.C., Markowich P.A., Perthame B., Schmeiser C., Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math.142 (2004) 123-141. Zbl1052.92005MR2065025
  11. [11] Chalub F.A.C.C., Rodrigues J.F., A class of kinetic models for chemotaxis with threshold to prevent overcrowding, Port. Math. (N.S.)63 (2006) 227-250. Zbl1109.92010MR2229876
  12. [12] Chavanis P.-H., Sire C., Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I, II, Phys. Rev. E73 (2006) 066103-066104. Zbl1244.82037
  13. [13] Corrias L., Perthame B., Zaag H., Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math.72 (2004) 1-28. Zbl1115.35136MR2099126
  14. [14] Erban R., Othmer H.G., From individual to collective behavior in bacterial chemotaxis, SIAM J. Appl. Math.65 (2004) 361-391. Zbl1073.35116MR2123062
  15. [15] Erban R., Othmer H.G., Taxis equations for amoeboid cells, J. Math. Biol.54 (2007) 847-885. Zbl1148.92003MR2309023
  16. [16] Escobedo M., Mischler S., On a quantum Boltzmann equation for a gas of photons, J. Math. Pures Appl.80 (2001) 471-515. Zbl1134.82318MR1831432
  17. [17] Gajewski H., Zacharias K., Global behaviour of a reaction–diffusion system modelling chemotaxis, Math. Nachr.195 (1998) 77-114. Zbl0918.35064MR1654677
  18. [18] Glassey R.T., The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1996. Zbl0858.76001MR1379589
  19. [19] Glassey R.T., Schaeffer J., On symmetric solutions of the relativistic Vlasov–Poisson system, Comm. Math. Phys.101 (1985) 459-473. Zbl0582.35110MR815195
  20. [20] Hillen T., M 5 mesoscopic and macroscopic models for mesenchymal motion, J. Math. Biol.53 (2006) 585-616. Zbl1112.92003MR2251791
  21. [21] Horst E., On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. II. Special cases, Math. Methods Appl. Sci.4 (1982) 19-32. Zbl0485.35079MR647387
  22. [22] Hwang H.J., Kang K., Stevens A., Global solutions of nonlinear transport equations for chemosensitive movement, SIAM J. Math. Anal.36 (2005) 1177-1199. Zbl1099.82018MR2139206
  23. [23] Jäger W., Luckhaus S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc.329 (1992) 819-824. Zbl0746.35002MR1046835
  24. [24] Lemou M., Méhats F., Raphael P., On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system, C.R. Math. Acad. Sci. Paris, Ser. I341 (2005) 269-274. Zbl1073.70012MR2164685
  25. [25] Lu X., The Boltzmann equation for Bose–Einstein particles: Velocity concentration and convergence to equilibrium, J. Stat. Phys.119 (2005) 1027-1067. Zbl1135.82029MR2157856
  26. [26] Mischler S., Mouhot C., Rodriguez Ricard M., Cooling process for inelastic Boltzmann equations for hard spheres. I. The Cauchy problem, J. Stat. Phys.124 (2006) 655-702. Zbl1135.82325MR2264622
  27. [27] Nagai T., Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl.5 (1995) 581-601. Zbl0843.92007MR1361006
  28. [28] Othmer H.G., Dunbar S.R., Alt W., Models of dispersal in biological systems, J. Math. Biol.26 (1988) 263-298. Zbl0713.92018MR949094
  29. [29] Othmer H.G., Hillen T., The diffusion limit of transport equations. II. Chemotaxis equations, SIAM J. Appl. Math.62 (2002) 1222-1250. Zbl1103.35098MR1898520
  30. [30] Othmer H.G., Stevens A., Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math.57 (1997) 1044-1081. Zbl0990.35128MR1462051
  31. [31] Saint-Raymond L., Kinetic models for superfluids: A review of mathematical results, C. R. Phys.5 (2004) 65-75. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.