Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data
Nikolaos Bournaveas; Vincent Calvez
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 5, page 1871-1895
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBournaveas, Nikolaos, and Calvez, Vincent. "Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1871-1895. <http://eudml.org/doc/78917>.
@article{Bournaveas2009,
author = {Bournaveas, Nikolaos, Calvez, Vincent},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {chemotaxis; kinetic model; blow-up; global existence; drift-diffusion limit},
language = {eng},
number = {5},
pages = {1871-1895},
publisher = {Elsevier},
title = {Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data},
url = {http://eudml.org/doc/78917},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Bournaveas, Nikolaos
AU - Calvez, Vincent
TI - Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1871
EP - 1895
LA - eng
KW - chemotaxis; kinetic model; blow-up; global existence; drift-diffusion limit
UR - http://eudml.org/doc/78917
ER -
References
top- [1] Blanchet A., Dolbeault J., Perthame B., Two-dimensional Keller–Segel model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations44 (2006), 32 pp. (electronic). Zbl1112.35023MR2226917
- [2] Bobylev A.V., Carrillo J.A., Gamba I.M., On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Stat. Phys.98 (2000) 743-773, J. Stat. Phys.103 (2001) 1137-1138, erratum. Zbl1126.82323MR1749231
- [3] Bolley F., Carrillo J.A., Tanaka theorem for inelastic Maxwell models, Comm. Math. Phys.276 (2007) 287-314. Zbl1136.82033MR2346391
- [4] Bournaveas N., Calvez V., Gutiérrez S., Perthame B., Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates, Comm. Partial Differential Equations33 (2008) 79-95. Zbl1137.92004MR2398220
- [5] Bournaveas N., Calvez V., Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables, Kinetic and Related Models1 (2008) 29-48. Zbl1140.92002MR2383714
- [6] Calvez V., Corrias L., The parabolic–parabolic Keller–Segel model in , Commun. Math. Sci.6 (2008) 417-447. Zbl1149.35360MR2433703
- [7] Calvez V., Perthame B., Sharifi tabar M., Modified Keller–Segel system and critical mass for the log interaction kernel, in: Stochastic Analysis and Partial Differential Equations, Contemp. Math., vol. 429, Amer. Math. Soc., Providence, RI, 2007, pp. 45-62. Zbl1126.35077MR2391528
- [8] Castella F., Perthame B., Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris Sér. I Math.322 (1996) 535-540. Zbl0848.35095MR1383431
- [9] Chalub F.A.C.C., Dolak-Struss Y., Markowich P.A., Oelz D., Schmeiser C., Soreff A., Model hierarchies for cell aggregation by chemotaxis, Math. Models Methods Appl. Sci.16 (2006) 1173-1197. Zbl1094.92009MR2250124
- [10] Chalub F.A.C.C., Markowich P.A., Perthame B., Schmeiser C., Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math.142 (2004) 123-141. Zbl1052.92005MR2065025
- [11] Chalub F.A.C.C., Rodrigues J.F., A class of kinetic models for chemotaxis with threshold to prevent overcrowding, Port. Math. (N.S.)63 (2006) 227-250. Zbl1109.92010MR2229876
- [12] Chavanis P.-H., Sire C., Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I, II, Phys. Rev. E73 (2006) 066103-066104. Zbl1244.82037
- [13] Corrias L., Perthame B., Zaag H., Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math.72 (2004) 1-28. Zbl1115.35136MR2099126
- [14] Erban R., Othmer H.G., From individual to collective behavior in bacterial chemotaxis, SIAM J. Appl. Math.65 (2004) 361-391. Zbl1073.35116MR2123062
- [15] Erban R., Othmer H.G., Taxis equations for amoeboid cells, J. Math. Biol.54 (2007) 847-885. Zbl1148.92003MR2309023
- [16] Escobedo M., Mischler S., On a quantum Boltzmann equation for a gas of photons, J. Math. Pures Appl.80 (2001) 471-515. Zbl1134.82318MR1831432
- [17] Gajewski H., Zacharias K., Global behaviour of a reaction–diffusion system modelling chemotaxis, Math. Nachr.195 (1998) 77-114. Zbl0918.35064MR1654677
- [18] Glassey R.T., The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1996. Zbl0858.76001MR1379589
- [19] Glassey R.T., Schaeffer J., On symmetric solutions of the relativistic Vlasov–Poisson system, Comm. Math. Phys.101 (1985) 459-473. Zbl0582.35110MR815195
- [20] Hillen T., mesoscopic and macroscopic models for mesenchymal motion, J. Math. Biol.53 (2006) 585-616. Zbl1112.92003MR2251791
- [21] Horst E., On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. II. Special cases, Math. Methods Appl. Sci.4 (1982) 19-32. Zbl0485.35079MR647387
- [22] Hwang H.J., Kang K., Stevens A., Global solutions of nonlinear transport equations for chemosensitive movement, SIAM J. Math. Anal.36 (2005) 1177-1199. Zbl1099.82018MR2139206
- [23] Jäger W., Luckhaus S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc.329 (1992) 819-824. Zbl0746.35002MR1046835
- [24] Lemou M., Méhats F., Raphael P., On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system, C.R. Math. Acad. Sci. Paris, Ser. I341 (2005) 269-274. Zbl1073.70012MR2164685
- [25] Lu X., The Boltzmann equation for Bose–Einstein particles: Velocity concentration and convergence to equilibrium, J. Stat. Phys.119 (2005) 1027-1067. Zbl1135.82029MR2157856
- [26] Mischler S., Mouhot C., Rodriguez Ricard M., Cooling process for inelastic Boltzmann equations for hard spheres. I. The Cauchy problem, J. Stat. Phys.124 (2006) 655-702. Zbl1135.82325MR2264622
- [27] Nagai T., Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl.5 (1995) 581-601. Zbl0843.92007MR1361006
- [28] Othmer H.G., Dunbar S.R., Alt W., Models of dispersal in biological systems, J. Math. Biol.26 (1988) 263-298. Zbl0713.92018MR949094
- [29] Othmer H.G., Hillen T., The diffusion limit of transport equations. II. Chemotaxis equations, SIAM J. Appl. Math.62 (2002) 1222-1250. Zbl1103.35098MR1898520
- [30] Othmer H.G., Stevens A., Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math.57 (1997) 1044-1081. Zbl0990.35128MR1462051
- [31] Saint-Raymond L., Kinetic models for superfluids: A review of mathematical results, C. R. Phys.5 (2004) 65-75.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.