Generalised twists, , and the -energy over a space of measure preserving maps
M. S. Shahrokhi-Dehkordi; A. Taheri
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 5, page 1897-1924
- ISSN: 0294-1449
Access Full Article
topHow to cite
topShahrokhi-Dehkordi, M. S., and Taheri, A.. "Generalised twists, $\mathrm {SO}\left(n\right)$, and the $p$-energy over a space of measure preserving maps." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1897-1924. <http://eudml.org/doc/78918>.
@article{Shahrokhi2009,
author = {Shahrokhi-Dehkordi, M. S., Taheri, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {uniqueness; non-uniqueness; Euler-Lagrange equations; even dimensions; odd dimensions},
language = {eng},
number = {5},
pages = {1897-1924},
publisher = {Elsevier},
title = {Generalised twists, $\mathrm \{SO\}\left(n\right)$, and the $p$-energy over a space of measure preserving maps},
url = {http://eudml.org/doc/78918},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Shahrokhi-Dehkordi, M. S.
AU - Taheri, A.
TI - Generalised twists, $\mathrm {SO}\left(n\right)$, and the $p$-energy over a space of measure preserving maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1897
EP - 1924
LA - eng
KW - uniqueness; non-uniqueness; Euler-Lagrange equations; even dimensions; odd dimensions
UR - http://eudml.org/doc/78918
ER -
References
top- [1] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
- [2] Ball J.M., Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. Ser. A306 (1982) 557-611. Zbl0513.73020MR703623
- [3] Bauman P., Owen N.C., Phillips D., Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity, Comm. Partial Differential Equations17 (1992) 1185-1212. Zbl0777.35014MR1179283
- [4] Bredon G., Topology and Geometry, Graduate Texts in Mathematics, vol. 139, Springer, 1993. Zbl0791.55001MR1224675
- [5] Cesari L., Optimization-Theory and Application, Applications of Mathematics, vol. 17, Springer, 1983. Zbl0506.49001MR688142
- [6] Evans L.C., Gariepy R.F., On the partial regularity of energy-minimizing, area preserving maps, Calc. Var.63 (1999) 357-372. Zbl0954.49024MR1731471
- [7] Kato T., Perturbation Theory for Linear Operators, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, 1980. Zbl0435.47001
- [8] Knops R.J., Stuart C.A., Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Ration. Mech. Anal.86 (3) (1984) 233-249. Zbl0589.73017MR751508
- [9] Post K., Sivaloganathan J., On homotopy conditions and the existence of multiple equilibria in finite elasticity, Proc. Roy. Soc. Edinburgh Sect. A127 (1997) 595-614. Zbl0878.73025MR1453283
- [10] Shahrokhi-Dehkordi M.S., Taheri A., Generalised twists, stationary loops and the Dirichlet energy on a space of measure preserving maps, Calc. Var. Partial Differential Equations35 (2) (2009) 191-213. Zbl1160.49040MR2481822
- [11] M.S. Shahrokhi-Dehkordi, A. Taheri, in preparation.
- [12] Sivaloganathan J., Uniqueness of regular and singular equilibria for spherical symmetric problems of nonlinear elasticity, Arch. Ration. Mech. Anal.96 (3) (1986) 97-136. Zbl0628.73018MR853969
- [13] Taheri A., Local minimizers and quasiconvexity – the impact of topology, Arch. Ration. Mech. Anal.176 (3) (2005) 363-414. Zbl1073.49007MR2185663
- [14] Taheri A., Minimizing the Dirichlet energy on a space of measure preserving maps, Topol. Methods Nonlinear Anal.33 (1) (2009) 179-204. Zbl1172.49005MR2524492
- [15] A. Taheri, On a topological degree on the space of self-maps of annuli, submitted for publication. Zbl1207.55004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.