Generalised twists, SO n , and the p -energy over a space of measure preserving maps

M. S. Shahrokhi-Dehkordi; A. Taheri

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 1897-1924
  • ISSN: 0294-1449

How to cite

top

Shahrokhi-Dehkordi, M. S., and Taheri, A.. "Generalised twists, $\mathrm {SO}\left(n\right)$, and the $p$-energy over a space of measure preserving maps." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1897-1924. <http://eudml.org/doc/78918>.

@article{Shahrokhi2009,
author = {Shahrokhi-Dehkordi, M. S., Taheri, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {uniqueness; non-uniqueness; Euler-Lagrange equations; even dimensions; odd dimensions},
language = {eng},
number = {5},
pages = {1897-1924},
publisher = {Elsevier},
title = {Generalised twists, $\mathrm \{SO\}\left(n\right)$, and the $p$-energy over a space of measure preserving maps},
url = {http://eudml.org/doc/78918},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Shahrokhi-Dehkordi, M. S.
AU - Taheri, A.
TI - Generalised twists, $\mathrm {SO}\left(n\right)$, and the $p$-energy over a space of measure preserving maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1897
EP - 1924
LA - eng
KW - uniqueness; non-uniqueness; Euler-Lagrange equations; even dimensions; odd dimensions
UR - http://eudml.org/doc/78918
ER -

References

top
  1. [1] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
  2. [2] Ball J.M., Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. Ser. A306 (1982) 557-611. Zbl0513.73020MR703623
  3. [3] Bauman P., Owen N.C., Phillips D., Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity, Comm. Partial Differential Equations17 (1992) 1185-1212. Zbl0777.35014MR1179283
  4. [4] Bredon G., Topology and Geometry, Graduate Texts in Mathematics, vol. 139, Springer, 1993. Zbl0791.55001MR1224675
  5. [5] Cesari L., Optimization-Theory and Application, Applications of Mathematics, vol. 17, Springer, 1983. Zbl0506.49001MR688142
  6. [6] Evans L.C., Gariepy R.F., On the partial regularity of energy-minimizing, area preserving maps, Calc. Var.63 (1999) 357-372. Zbl0954.49024MR1731471
  7. [7] Kato T., Perturbation Theory for Linear Operators, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, 1980. Zbl0435.47001
  8. [8] Knops R.J., Stuart C.A., Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Ration. Mech. Anal.86 (3) (1984) 233-249. Zbl0589.73017MR751508
  9. [9] Post K., Sivaloganathan J., On homotopy conditions and the existence of multiple equilibria in finite elasticity, Proc. Roy. Soc. Edinburgh Sect. A127 (1997) 595-614. Zbl0878.73025MR1453283
  10. [10] Shahrokhi-Dehkordi M.S., Taheri A., Generalised twists, stationary loops and the Dirichlet energy on a space of measure preserving maps, Calc. Var. Partial Differential Equations35 (2) (2009) 191-213. Zbl1160.49040MR2481822
  11. [11] M.S. Shahrokhi-Dehkordi, A. Taheri, in preparation. 
  12. [12] Sivaloganathan J., Uniqueness of regular and singular equilibria for spherical symmetric problems of nonlinear elasticity, Arch. Ration. Mech. Anal.96 (3) (1986) 97-136. Zbl0628.73018MR853969
  13. [13] Taheri A., Local minimizers and quasiconvexity – the impact of topology, Arch. Ration. Mech. Anal.176 (3) (2005) 363-414. Zbl1073.49007MR2185663
  14. [14] Taheri A., Minimizing the Dirichlet energy on a space of measure preserving maps, Topol. Methods Nonlinear Anal.33 (1) (2009) 179-204. Zbl1172.49005MR2524492
  15. [15] A. Taheri, On a topological degree on the space of self-maps of annuli, submitted for publication. Zbl1207.55004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.