Conservation laws on complex networks
Mauro Garavello; Benedetto Piccoli
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 5, page 1925-1951
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGaravello, Mauro, and Piccoli, Benedetto. "Conservation laws on complex networks." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1925-1951. <http://eudml.org/doc/78919>.
@article{Garavello2009,
author = {Garavello, Mauro, Piccoli, Benedetto},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {traffic flow; wave-front tracking; Lighthill-Whitham-Richards method; Lipschitz continuous dependence},
language = {eng},
number = {5},
pages = {1925-1951},
publisher = {Elsevier},
title = {Conservation laws on complex networks},
url = {http://eudml.org/doc/78919},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Garavello, Mauro
AU - Piccoli, Benedetto
TI - Conservation laws on complex networks
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1925
EP - 1951
LA - eng
KW - traffic flow; wave-front tracking; Lighthill-Whitham-Richards method; Lipschitz continuous dependence
UR - http://eudml.org/doc/78919
ER -
References
top- [1] Aw A., Rascle M., Resurrection of “second order” models of traffic flow, SIAM J. Appl. Math.60 (3) (2000) 916-938, (electronic). Zbl0957.35086MR1750085
- [2] Banda M.K., Herty M., Klar A., Gas flow in pipeline networks, Netw. Heterog. Media1 (1) (2006) 41-56. Zbl1108.76063MR2219276
- [3] Bardos C., Le Roux A.Y., Nédélec J.C., First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations4 (1979) 1017-1034. Zbl0418.35024MR542510
- [4] Bastin G., Haut B., A second order model of arc junctions in fluid models of traffic networks, Netw. Heterog. Media2 (2) (2007) 227-253. Zbl1161.35443MR2291820
- [5] Bayen A.M., Sun D., Strub I.S., Comparison of the performance of four Eulerian network flow models for strategic air traffic management, Netw. Heterog. Media2 (4) (2007) 569-595. Zbl1143.90006MR2357759
- [6] Bellomo N., Coscia A., First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow, C.R. Mecanique333 (2005) 843-851. Zbl1177.90076
- [7] Benzoni-Gavage S., Colombo R.M., An n-populations model for traffic flow, European J. Appl. Math.14 (5) (2003) 587-612. Zbl1143.82323MR2020123
- [8] Bressan A., A contractive metric for systems of conservation laws with coinciding shock and rarefaction curves, J. Differential Equations106 (1993) 332-366. Zbl0802.35095MR1251857
- [9] Bressan A., Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl., vol. 20, Oxford Univ. Press, Oxford, 2000. Zbl0997.35002MR1816648
- [10] Bressan A., Crasta G., Piccoli B., Well-posedness of the Cauchy problem for systems of conservation laws, Mem. Amer. Math. Soc.146 (694) (2000), viii+134. Zbl0958.35001MR1686652
- [11] Chitour Y., Piccoli B., Traffic circles timing of traffic lights for cars flow, Discrete Contin. Dyn. Syst. Ser. B5 (3) (2005) 599-630. Zbl1086.35066MR2151724
- [12] Coclite G.M., Garavello M., Piccoli B., Traffic flow on a road network, SIAM J. Math. Anal.36 (6) (2005) 1862-1886. Zbl1114.90010MR2178224
- [13] Colombo R.M., Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math.63 (2) (2002) 708-721, (electronic). Zbl1037.35043MR1951956
- [14] Colombo R.M., Garavello M., A well posed Riemann problem for the p-system at a junction, Netw. Heterog. Media1 (3) (2006) 495-511. Zbl1116.35086MR2247787
- [15] Colombo R.M., Garavello M., On the Cauchy problem for the p-system at a junction, SIAM J. Appl. Math.39 (5) (2008) 1456-1471. Zbl1155.35399MR2377285
- [16] R.M. Colombo, P. Goatin, B. Piccoli, Road network with phase transitions, preprint.
- [17] Dafermos C.M., Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss., vol. 325, second ed., Springer-Verlag, Berlin, 2005. Zbl1078.35001MR2169977
- [18] D'apice C., Manzo R., A fluid dynamic model for supply chains, Netw. Heterog. Media1 (3) (2006) 379-398. Zbl1131.90002MR2247783
- [19] D'apice C., Manzo R., Piccoli B., Packet flow on telecommunication networks, SIAM J. Math. Anal.38 (3) (2006) 717-740, (electronic). Zbl1147.35331MR2262939
- [20] Dubois F., LeFloch P., Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations71 (1) (1988) 93-122. Zbl0649.35057MR922200
- [21] Garavello M., Natalini R., Piccoli B., Terracina A., Conservation laws with discontinuous flux, Netw. Heterog. Media2 (1) (2007) 159-179, (electronic). Zbl1142.35511MR2291816
- [22] Garavello M., Piccoli B., Source-destination flow on a road network, Commun. Math. Sci.3 (3) (2005) 261-283. Zbl1136.90324MR2165018
- [23] Garavello M., Piccoli B., Traffic flow on a road network using the Aw–Rascle model, Comm. Partial Differential Equations31 (1–3) (2006) 243-275. Zbl1090.90032MR2209753
- [24] Garavello M., Piccoli B., Traffic Flow on Networks, AIMS Ser. Appl. Math., vol. 1, AIMS, 2006. Zbl1136.90012MR2328174
- [25] Goatin P., The Aw–Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling44 (3–4) (2006) 287-303. Zbl1134.35379MR2239057
- [26] Göttlich S., Herty M., Klar A., Network models for supply chains, Commun. Math. Sci.3 (4) (2005) 545-559. Zbl1115.90008MR2188683
- [27] Greenberg J.M., Klar A., Rascle M., Congestion on multilane highways, SIAM J. Appl. Math.63 (3) (2003) 818-833, (electronic). Zbl1024.35064MR1969676
- [28] Helbing D., Improved fluid-dynamic model for vehicular traffic, Phys. Rev. E51 (4) (Apr. 1995) 3164-3169.
- [29] Helbing D., Traffic and related self-driven many-particle systems, Rev. Modern Phys.73 (2001) 1067-1141.
- [30] Helbing D., Siegmeier J., Lämmer S., Self-organized network flows, Netw. Heterog. Media2 (2) (2007) 193-210. Zbl1160.90344MR2291818
- [31] Herty M., Moutari S., Rascle M., Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heterog. Media1 (2) (2006) 193-210. Zbl1131.90016MR2223072
- [32] Holden H., Risebro N.H., A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal.26 (4) (1995) 999-1017. Zbl0833.35089MR1338371
- [33] Holden H., Risebro N.H., Front Tracking for Hyperbolic Conservation Laws, Appl. Math. Sci., vol. 152, Springer-Verlag, New York, 2002. Zbl1006.35002MR1912206
- [34] Lighthill M.J., Whitham G.B., On kinematic waves. II. A theory of traffic flow on long crowded road, Proc. Roy. Soc. London. Ser. A229 (1955) 317-345. Zbl0064.20906MR72606
- [35] Marigo A., Piccoli B., A fluid dynamic model for T-junctions, SIAM J. Math. Anal.39 (6) (2008) 2016-2032. Zbl1153.90004MR2390323
- [36] Payne H.J., Models of freeway traffic and control, in mathematical models of public systems, Simul. Counc. Proc.1 (1971).
- [37] Richards P.I., Shock waves on the highway, Oper. Res.4 (1956) 42-51. MR75522
- [38] Siebel F., Mauser W., On the fundamental diagram of traffic flow, SIAM J. Appl. Math.66 (4) (2006) 1150-1162, (electronic). Zbl1102.35068MR2246050
- [39] Whitham G.B., Linear and Nonlinear Waves, Pure Appl. Math., Wiley–Interscience, John Wiley & Sons, New York, 1974. Zbl0373.76001MR483954
- [40] Zhang H.M., A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B236 (2002) 275-290.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.