Navier-Stokes equations with nonhomogeneous boundary conditions in a convex bi-dimensional domain

Vincent Girinon

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 2025-2053
  • ISSN: 0294-1449

How to cite

top

Girinon, Vincent. "Navier-Stokes equations with nonhomogeneous boundary conditions in a convex bi-dimensional domain." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 2025-2053. <http://eudml.org/doc/78923>.

@article{Girinon2009,
author = {Girinon, Vincent},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {compressible Navier-Stokes equations; inflow-outflow boundary conditions; global existence of weak solutions},
language = {eng},
number = {5},
pages = {2025-2053},
publisher = {Elsevier},
title = {Navier-Stokes equations with nonhomogeneous boundary conditions in a convex bi-dimensional domain},
url = {http://eudml.org/doc/78923},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Girinon, Vincent
TI - Navier-Stokes equations with nonhomogeneous boundary conditions in a convex bi-dimensional domain
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 2025
EP - 2053
LA - eng
KW - compressible Navier-Stokes equations; inflow-outflow boundary conditions; global existence of weak solutions
UR - http://eudml.org/doc/78923
ER -

References

top
  1. [1] Amann H., Ordinary Differential Equations. An Introduction to Nonlinear Analysis, de Gruyter Stud. Math., de Gruyter, 1990. Zbl0708.34002MR1071170
  2. [2] Feireisl E., Dynamics of Viscous Compressible Fluids, Oxford Lecture Ser. Math. Appl., vol. 26, Oxford University Press, 2003. Zbl1080.76001MR2040667
  3. [3] Feireisl E., On compactness of solutions to the isentropic Navier–Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin.42 (1) (2001) 83-98. Zbl1115.35096MR1825374
  4. [4] Feireisl E., Novotný A., Petzeltová H., On existence of globally defined weak solution to the Navier–Stokes equations, J. Math. Fluid Mech.3 (2001) 358-392. Zbl0997.35043MR1867887
  5. [5] V. Girinon, Quelques problèmes aux limites pour les équations de Navier–Stokes, Thèse de l'Université de Toulouse III, 2008. 
  6. [6] Lions P.-L., Mathematical Topics in Fluid Mechanics, vol. 1: Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 10, Oxford University Press, 1996. Zbl0866.76002MR1422251
  7. [7] Lions P.-L., Mathematical Topics in Fluid Mechanics, vol. 2: Compressible Models, Oxford Lecture Ser. Math. Appl., vol. 10, Oxford University Press, 1998. Zbl0908.76004MR1637634
  8. [8] Novo S., Compressible Navier–Stokes model with inflow–outflow boundary conditions, J. Math. Fluid Mech.7 (2005) 485-514. Zbl1090.35139MR2189672
  9. [9] Novotný A., Straškraba I., Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Ser. Math. Appl., vol. 27, Oxford University Press, 2004. Zbl1088.35051MR2084891

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.