Navier-Stokes equations with nonhomogeneous boundary conditions in a convex bi-dimensional domain
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 5, page 2025-2053
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] Amann H., Ordinary Differential Equations. An Introduction to Nonlinear Analysis, de Gruyter Stud. Math., de Gruyter, 1990. Zbl0708.34002MR1071170
- [2] Feireisl E., Dynamics of Viscous Compressible Fluids, Oxford Lecture Ser. Math. Appl., vol. 26, Oxford University Press, 2003. Zbl1080.76001MR2040667
- [3] Feireisl E., On compactness of solutions to the isentropic Navier–Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin.42 (1) (2001) 83-98. Zbl1115.35096MR1825374
- [4] Feireisl E., Novotný A., Petzeltová H., On existence of globally defined weak solution to the Navier–Stokes equations, J. Math. Fluid Mech.3 (2001) 358-392. Zbl0997.35043MR1867887
- [5] V. Girinon, Quelques problèmes aux limites pour les équations de Navier–Stokes, Thèse de l'Université de Toulouse III, 2008.
- [6] Lions P.-L., Mathematical Topics in Fluid Mechanics, vol. 1: Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 10, Oxford University Press, 1996. Zbl0866.76002MR1422251
- [7] Lions P.-L., Mathematical Topics in Fluid Mechanics, vol. 2: Compressible Models, Oxford Lecture Ser. Math. Appl., vol. 10, Oxford University Press, 1998. Zbl0908.76004MR1637634
- [8] Novo S., Compressible Navier–Stokes model with inflow–outflow boundary conditions, J. Math. Fluid Mech.7 (2005) 485-514. Zbl1090.35139MR2189672
- [9] Novotný A., Straškraba I., Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Ser. Math. Appl., vol. 27, Oxford University Press, 2004. Zbl1088.35051MR2084891