On the uniqueness of the second bound state solution of a semilinear equation

Carmen Cortázar; Marta García-Huidobro; Cecilia S. Yarur

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2091-2110
  • ISSN: 0294-1449

How to cite

top

Cortázar, Carmen, García-Huidobro, Marta, and Yarur, Cecilia S.. "On the uniqueness of the second bound state solution of a semilinear equation." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2091-2110. <http://eudml.org/doc/78926>.

@article{Cortázar2009,
author = {Cortázar, Carmen, García-Huidobro, Marta, Yarur, Cecilia S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {bound state; uniqueness; separation lemmas; semilinear equation},
language = {eng},
number = {6},
pages = {2091-2110},
publisher = {Elsevier},
title = {On the uniqueness of the second bound state solution of a semilinear equation},
url = {http://eudml.org/doc/78926},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Cortázar, Carmen
AU - García-Huidobro, Marta
AU - Yarur, Cecilia S.
TI - On the uniqueness of the second bound state solution of a semilinear equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2091
EP - 2110
LA - eng
KW - bound state; uniqueness; separation lemmas; semilinear equation
UR - http://eudml.org/doc/78926
ER -

References

top
  1. [1] Berestycki H., Lions P.L., Non linear scalar fields equations I. Existence of a ground state, Arch. Ration. Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
  2. [2] Caristi G., Mitidieri E., Nonexistence of positive solutions of quasilinear equations, Adv. Differential Equations2 (3) (1997) 319-359. Zbl1023.34500MR1441847
  3. [3] Chen C.C., Lin C.S., Uniqueness of the ground state solutions of Δ u + f u = 0 in R N , N 3 , Comm. Partial Differential Equations16 (1991) 1549-1572. Zbl0753.35034MR1132797
  4. [4] Coffman C.V., Uniqueness of the ground state solution of Δ u - u + u 3 = 0 and a variational characterization of other solutions, Arch. Ration. Mech. Anal.46 (1972) 81-95. Zbl0249.35029MR333489
  5. [5] Coffman C.V., A nonlinear boundary value problem with many positive solutions, J. Differential Equations54 (1984) 429-437. Zbl0569.35033MR760381
  6. [6] Cortázar C., Felmer P., Elgueta M., On a semilinear elliptic problem in R N with a non Lipschitzian nonlinearity, Adv. Differential Equations1 (1996) 199-218. Zbl0845.35031MR1364001
  7. [7] Cortázar C., Felmer P., Elgueta M., Uniqueness of positive solutions of Δ u + f u = 0 in R N , N 3 , Arch. Ration. Mech. Anal.142 (1998) 127-141. Zbl0912.35059MR1629650
  8. [8] Cortázar C., García-Huidobro M., On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian, Comm. Pure. Appl. Anal.5 (2006) 813-826. Zbl1137.35029MR2246009
  9. [9] Erbe L., Tang M., Uniqueness theorems for positive solutions of quasilinear elliptic equations in a ball, J. Differential Equations138 (1997) 351-379. Zbl0884.34025MR1462272
  10. [10] Franchi B., Lanconelli E., Serrin J., Existence and uniqueness of nonnegative solutions of quasilinear equations in R n , Adv. Math.118 (1996) 177-243. Zbl0853.35035MR1378680
  11. [11] García-Huidobro M., Henao D., On the uniqueness of positive solutions of a quasilinear equation containing a weighted p-Laplacian, Comm. Contemp. Math.10 (2008) 405-432. Zbl1188.35090MR2417923
  12. [12] Kwong M.K., Uniqueness of positive solutions of Δ u - u + u p = 0 , Arch. Ration. Mech. Anal.105 (1989) 243-266. Zbl0676.35032MR969899
  13. [13] McLeod K., Uniqueness of positive radial solutions of Δ u + f u = 0 in R N , II, Trans. Amer. Math. Soc.339 (1993) 495-505. Zbl0804.35034MR1201323
  14. [14] McLeod K., Serrin J., Uniqueness of positive radial solutions of Δ u + f u = 0 in R N , Arch. Ration. Mech. Anal.99 (1987) 115-145. Zbl0667.35023MR886933
  15. [15] McLeod K., Troy W.C., Weissler F.B., Radial solutions of Δ u + f u = 0 with prescribed numbers of zeros, J. Differential Equations83 (2) (1990) 368-378. Zbl0695.34020MR1033193
  16. [16] Peletier L., Serrin J., Uniqueness of positive solutions of quasilinear equations, Arch. Ration. Mech. Anal.81 (1983) 181-197. Zbl0516.35031MR682268
  17. [17] Peletier L., Serrin J., Uniqueness of nonnegative solutions of quasilinear equations, J. Differential Equations61 (1986) 380-397. Zbl0577.35035MR829369
  18. [18] Pucci P.R., Serrin J., Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J.47 (1998) 529-539. Zbl0920.35055MR1647928
  19. [19] Serrin J., Tang M., Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J.49 (2000) 897-923. Zbl0979.35049MR1803216
  20. [20] Troy W., The existence and uniqueness of bound state solutions of a semilinear equation, Proc. Roy Soc. A461 (2005) 2941-2963. Zbl1186.34038MR2165520

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.