On the uniqueness of the second bound state solution of a semilinear equation

Carmen Cortázar; Marta García-Huidobro; Cecilia S. Yarur

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2091-2110
  • ISSN: 0294-1449

How to cite

top

Cortázar, Carmen, García-Huidobro, Marta, and Yarur, Cecilia S.. "On the uniqueness of the second bound state solution of a semilinear equation." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2091-2110. <http://eudml.org/doc/78926>.

@article{Cortázar2009,
author = {Cortázar, Carmen, García-Huidobro, Marta, Yarur, Cecilia S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {bound state; uniqueness; separation lemmas; semilinear equation},
language = {eng},
number = {6},
pages = {2091-2110},
publisher = {Elsevier},
title = {On the uniqueness of the second bound state solution of a semilinear equation},
url = {http://eudml.org/doc/78926},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Cortázar, Carmen
AU - García-Huidobro, Marta
AU - Yarur, Cecilia S.
TI - On the uniqueness of the second bound state solution of a semilinear equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2091
EP - 2110
LA - eng
KW - bound state; uniqueness; separation lemmas; semilinear equation
UR - http://eudml.org/doc/78926
ER -

References

top
  1. [1] Berestycki H., Lions P.L., Non linear scalar fields equations I. Existence of a ground state, Arch. Ration. Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
  2. [2] Caristi G., Mitidieri E., Nonexistence of positive solutions of quasilinear equations, Adv. Differential Equations2 (3) (1997) 319-359. Zbl1023.34500MR1441847
  3. [3] Chen C.C., Lin C.S., Uniqueness of the ground state solutions of Δ u + f u = 0 in R N , N 3 , Comm. Partial Differential Equations16 (1991) 1549-1572. Zbl0753.35034MR1132797
  4. [4] Coffman C.V., Uniqueness of the ground state solution of Δ u - u + u 3 = 0 and a variational characterization of other solutions, Arch. Ration. Mech. Anal.46 (1972) 81-95. Zbl0249.35029MR333489
  5. [5] Coffman C.V., A nonlinear boundary value problem with many positive solutions, J. Differential Equations54 (1984) 429-437. Zbl0569.35033MR760381
  6. [6] Cortázar C., Felmer P., Elgueta M., On a semilinear elliptic problem in R N with a non Lipschitzian nonlinearity, Adv. Differential Equations1 (1996) 199-218. Zbl0845.35031MR1364001
  7. [7] Cortázar C., Felmer P., Elgueta M., Uniqueness of positive solutions of Δ u + f u = 0 in R N , N 3 , Arch. Ration. Mech. Anal.142 (1998) 127-141. Zbl0912.35059MR1629650
  8. [8] Cortázar C., García-Huidobro M., On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian, Comm. Pure. Appl. Anal.5 (2006) 813-826. Zbl1137.35029MR2246009
  9. [9] Erbe L., Tang M., Uniqueness theorems for positive solutions of quasilinear elliptic equations in a ball, J. Differential Equations138 (1997) 351-379. Zbl0884.34025MR1462272
  10. [10] Franchi B., Lanconelli E., Serrin J., Existence and uniqueness of nonnegative solutions of quasilinear equations in R n , Adv. Math.118 (1996) 177-243. Zbl0853.35035MR1378680
  11. [11] García-Huidobro M., Henao D., On the uniqueness of positive solutions of a quasilinear equation containing a weighted p-Laplacian, Comm. Contemp. Math.10 (2008) 405-432. Zbl1188.35090MR2417923
  12. [12] Kwong M.K., Uniqueness of positive solutions of Δ u - u + u p = 0 , Arch. Ration. Mech. Anal.105 (1989) 243-266. Zbl0676.35032MR969899
  13. [13] McLeod K., Uniqueness of positive radial solutions of Δ u + f u = 0 in R N , II, Trans. Amer. Math. Soc.339 (1993) 495-505. Zbl0804.35034MR1201323
  14. [14] McLeod K., Serrin J., Uniqueness of positive radial solutions of Δ u + f u = 0 in R N , Arch. Ration. Mech. Anal.99 (1987) 115-145. Zbl0667.35023MR886933
  15. [15] McLeod K., Troy W.C., Weissler F.B., Radial solutions of Δ u + f u = 0 with prescribed numbers of zeros, J. Differential Equations83 (2) (1990) 368-378. Zbl0695.34020MR1033193
  16. [16] Peletier L., Serrin J., Uniqueness of positive solutions of quasilinear equations, Arch. Ration. Mech. Anal.81 (1983) 181-197. Zbl0516.35031MR682268
  17. [17] Peletier L., Serrin J., Uniqueness of nonnegative solutions of quasilinear equations, J. Differential Equations61 (1986) 380-397. Zbl0577.35035MR829369
  18. [18] Pucci P.R., Serrin J., Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J.47 (1998) 529-539. Zbl0920.35055MR1647928
  19. [19] Serrin J., Tang M., Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J.49 (2000) 897-923. Zbl0979.35049MR1803216
  20. [20] Troy W., The existence and uniqueness of bound state solutions of a semilinear equation, Proc. Roy Soc. A461 (2005) 2941-2963. Zbl1186.34038MR2165520

NotesEmbed ?

top

You must be logged in to post comments.