Homogenization of p -laplacian in perforated domain

B. Amaziane; S. Antontsev; L. Pankratov; A. Piatnitski

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2457-2479
  • ISSN: 0294-1449

How to cite

top

Amaziane, B., et al. "Homogenization of $p$-laplacian in perforated domain." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2457-2479. <http://eudml.org/doc/78942>.

@article{Amaziane2009,
author = {Amaziane, B., Antontsev, S., Pankratov, L., Piatnitski, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {periodic and non-periodic examples; non-standard growth},
language = {eng},
number = {6},
pages = {2457-2479},
publisher = {Elsevier},
title = {Homogenization of $p$-laplacian in perforated domain},
url = {http://eudml.org/doc/78942},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Amaziane, B.
AU - Antontsev, S.
AU - Pankratov, L.
AU - Piatnitski, A.
TI - Homogenization of $p$-laplacian in perforated domain
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2457
EP - 2479
LA - eng
KW - periodic and non-periodic examples; non-standard growth
UR - http://eudml.org/doc/78942
ER -

References

top
  1. [1] Acerbi E., Mingione G., Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal.156 (2001) 121-140. Zbl0984.49020MR1814973
  2. [2] Amaziane B., Pankratov L., Piatnitski A., Homogenization of a class of quasilinear elliptic equations in high-contrast fissured media, Proc. Roy. Soc. Edinburgh Sect. A136 (2006) 1131-1155. Zbl1123.35307MR2290127
  3. [3] Amaziane B., Antontsev A., Pankratov L., Homogenization of a class of nonlinear elliptic equations with nonstandard growth, C. R. Mécanique335 (2007) 138-143. Zbl1116.35009
  4. [4] Amaziane B., Antontsev S., Pankratov L., Piatnitski A., Γ-convergence and homogenization of functionals on Sobolev spaces with variable exponents, J. Math. Anal. Appl.342 (2008) 1192-1202. Zbl05264230MR2445268
  5. [5] Amaziane B., Pankratov L., Pritula V.V., Nonlocal effects in homogenization of p ϵ x -Laplacian in perforated domains, Nonlinear Anal. (2009). Zbl1201.35031MR2536313
  6. [6] Amaziane B., Pankratov L., Pritula V.V., Homogenization of p ϵ x -Laplacian in perforated domains with a nonlocal transmission condition, C. R. Mécanique337 (2009) 173-178. 
  7. [7] Antontsev S.N., Díaz J.I., de Oliveira H.B., Stopping a viscous fluid by a feedback dissipative field: Thermal effects without phase changing, in: Proceedings of Trends in Partial Differential Equations of Mathematical Physics, Progr. Nonlinear Differential Equations Appl., vol. 61, Birkhäuser, Basel, 2005, pp. 1-14. Zbl1082.35117MR2129605
  8. [8] Antontsev S.N., Shmarev S.I., On localization of solutions of elliptic equations with nonhomogeneous anisotropic degeneracy, Siberian Math. J.46 (2005) 765-782. Zbl1126.35020MR2187456
  9. [9] Antontsev S.N., Rodrigues J.F., On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. Sci. Mat.52 (2006) 19-36. Zbl1117.76004MR2246902
  10. [10] Antontsev S.N., Shmarev S.I., Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, in: Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, Elsevier, 2006, pp. 1-100, Chapter 1. Zbl1192.35047
  11. [11] Antontsev S.N., Shmarev S.I., Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions, J. Nonlinear Anal.65 (2006) 722-755. Zbl1245.35033MR2232679
  12. [12] Balzano M., Corbo Esposito A., Paderni G., Nonlinear Dirichlet problems in randomly perforated domains, Rend. Mat. Appl. (7)17 (1997) 163-186. Zbl0886.49017MR1484930
  13. [13] Barenblatt G., Entov V., Ryzhik V., The Motion of Fluids and Gases in Natural Strata, Nedra Publishing House, Moscow, 1984. 
  14. [14] Braides A., Defranceschi A., Homogenization of Multiple Integrals, Oxford Lecture Ser. Math. Appl., vol. 12, Clarendon Press, Oxford, 1998. Zbl0911.49010MR1684713
  15. [15] Cioranescu D., Murat F., Un terme étrange venu d'ailleurs I and II, Nonlinear Partial Differential Equations and Their ApplicationsII (1983) 98-138. Zbl0496.35030MR652509
  16. [16] Dal Maso G., Murat F., Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators, Ann. Sc. Norm. Super. Pisa7 (1997) 765-803. Zbl0899.35007
  17. [17] Fan X., Zhang Q., Existence of solutions for p x -Laplacian Dirichlet problem, J. Nonlinear Anal.52 (2003) 1843-1852. Zbl1146.35353MR1954585
  18. [18] Harjulehto P., Hästö P., Koskenoja M., Varonen S., The Dirichlet energy integral and variable exponents Sobolev spaces with zero boundary values, Potential Anal.25 (2006) 205-222. Zbl1120.46016MR2255345
  19. [19] Hudzik H., On generalized Orlicz–Sobolev space, Funct. Approx. Comment. Math.4 (1976) 37-51. Zbl0355.46012MR442671
  20. [20] Khruslov E.Ya., Pankratov L., Homogenization of the Dirichlet variational problems in Orlicz–Sobolev spaces, Fields Inst. Commun.25 (2000) 345-366. Zbl0961.49010MR1759552
  21. [21] Kováčik O., Rákosník J., On spaces L p x and W k , p x , Czechoslovak Math. J.41 (1991) 592-618. Zbl0784.46029MR1134951
  22. [22] Kozlov S.M., Geometric aspects of averaging, Russian Math. Surveys44 (1989) 91-144. Zbl0706.49029MR998362
  23. [23] Ladyzhenskaya O.A., Ural'tseva N.N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1973. Zbl0164.13002MR244627
  24. [24] Chen Y., Levine S., Rao M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math.66 (4) (2006) 1383-1406. Zbl1102.49010MR2246061
  25. [25] Marchenko V.A., Khruslov E.Ya., Boundary value problems with fine-grained boundary, Mat. Sb.65 (3) (1964) 458-472. Zbl0171.08701MR178156
  26. [26] Marchenko V.A., Khruslov E.Ya., Homogenization of Partial Differential Equations, Birkhäuser, Boston, 2006. Zbl1113.35003MR2182441
  27. [27] Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer-Verlag, Berlin, 1983. Zbl0557.46020MR724434
  28. [28] Nguetseng G., Nnang H., Homogenization of nonlinear monotone operators beyond the periodic setting, Electron. J. Differential Equations36 (2003) 1-24. Zbl1032.35031MR1971022
  29. [29] Pankov A., G-Convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Academic, Dordrecht, 1997. Zbl0883.35001MR1482803
  30. [30] Rajagopal K., Ru̇žička M., Mathematical modelling of electro-rheological fluids, Contin. Mech. Thermodyn.13 (2001) 59-78. Zbl0971.76100
  31. [31] Ru̇žička M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer, Berlin, 2000. Zbl0962.76001MR1810360
  32. [32] Šarapudinov I.I., The topology of the space L p t 0 , 1 , Mat. Zametki26 (1979) 613-632. Zbl0437.46024MR552723
  33. [33] Skrypnik I.V., Methods of Investigation of Nonlinear Elliptic Boundary Value Problems, Nauka, Moscow, 1990. Zbl0743.35026MR1131775
  34. [34] Zhikov V.V., Lavrentiev effect and the averaging of nonlinear variational problems, Differ. Equ.27 (1991) 32-39. Zbl0749.49022MR1133509
  35. [35] Zhikov V.V., On the passage to the limit in nonlinear variational problems, Math. Sb.183 (1992) 47-84. Zbl0767.35021MR1187249
  36. [36] Zhikov V.V., Lavrentiev phenomenon and homogenization for some variational problems, C. R. Acad. Sci. Paris Sér. I316 (1993) 435-439. Zbl0783.35005MR1209262
  37. [37] Zhikov V.V., On Lavrentiev's phenomenon, Russ. J. Math. Phys.3 (1995) 249-269. Zbl0910.49020MR1350506
  38. [38] Zhikov V.V., Kozlov S.M., Oleinik O.A., Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin/Heidelberg/New York, 1994. Zbl0838.35001MR1329546
  39. [39] Zhikov V.V., On some variational problems, Russ. J. Math. Phys.5 (1997) 105-116. Zbl0917.49006MR1486765

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.