Homogenization of -laplacian in perforated domain
B. Amaziane; S. Antontsev; L. Pankratov; A. Piatnitski
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 6, page 2457-2479
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAmaziane, B., et al. "Homogenization of $p$-laplacian in perforated domain." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2457-2479. <http://eudml.org/doc/78942>.
@article{Amaziane2009,
author = {Amaziane, B., Antontsev, S., Pankratov, L., Piatnitski, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {periodic and non-periodic examples; non-standard growth},
language = {eng},
number = {6},
pages = {2457-2479},
publisher = {Elsevier},
title = {Homogenization of $p$-laplacian in perforated domain},
url = {http://eudml.org/doc/78942},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Amaziane, B.
AU - Antontsev, S.
AU - Pankratov, L.
AU - Piatnitski, A.
TI - Homogenization of $p$-laplacian in perforated domain
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2457
EP - 2479
LA - eng
KW - periodic and non-periodic examples; non-standard growth
UR - http://eudml.org/doc/78942
ER -
References
top- [1] Acerbi E., Mingione G., Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal.156 (2001) 121-140. Zbl0984.49020MR1814973
- [2] Amaziane B., Pankratov L., Piatnitski A., Homogenization of a class of quasilinear elliptic equations in high-contrast fissured media, Proc. Roy. Soc. Edinburgh Sect. A136 (2006) 1131-1155. Zbl1123.35307MR2290127
- [3] Amaziane B., Antontsev A., Pankratov L., Homogenization of a class of nonlinear elliptic equations with nonstandard growth, C. R. Mécanique335 (2007) 138-143. Zbl1116.35009
- [4] Amaziane B., Antontsev S., Pankratov L., Piatnitski A., Γ-convergence and homogenization of functionals on Sobolev spaces with variable exponents, J. Math. Anal. Appl.342 (2008) 1192-1202. Zbl05264230MR2445268
- [5] Amaziane B., Pankratov L., Pritula V.V., Nonlocal effects in homogenization of -Laplacian in perforated domains, Nonlinear Anal. (2009). Zbl1201.35031MR2536313
- [6] Amaziane B., Pankratov L., Pritula V.V., Homogenization of -Laplacian in perforated domains with a nonlocal transmission condition, C. R. Mécanique337 (2009) 173-178.
- [7] Antontsev S.N., Díaz J.I., de Oliveira H.B., Stopping a viscous fluid by a feedback dissipative field: Thermal effects without phase changing, in: Proceedings of Trends in Partial Differential Equations of Mathematical Physics, Progr. Nonlinear Differential Equations Appl., vol. 61, Birkhäuser, Basel, 2005, pp. 1-14. Zbl1082.35117MR2129605
- [8] Antontsev S.N., Shmarev S.I., On localization of solutions of elliptic equations with nonhomogeneous anisotropic degeneracy, Siberian Math. J.46 (2005) 765-782. Zbl1126.35020MR2187456
- [9] Antontsev S.N., Rodrigues J.F., On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. Sci. Mat.52 (2006) 19-36. Zbl1117.76004MR2246902
- [10] Antontsev S.N., Shmarev S.I., Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, in: Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, Elsevier, 2006, pp. 1-100, Chapter 1. Zbl1192.35047
- [11] Antontsev S.N., Shmarev S.I., Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions, J. Nonlinear Anal.65 (2006) 722-755. Zbl1245.35033MR2232679
- [12] Balzano M., Corbo Esposito A., Paderni G., Nonlinear Dirichlet problems in randomly perforated domains, Rend. Mat. Appl. (7)17 (1997) 163-186. Zbl0886.49017MR1484930
- [13] Barenblatt G., Entov V., Ryzhik V., The Motion of Fluids and Gases in Natural Strata, Nedra Publishing House, Moscow, 1984.
- [14] Braides A., Defranceschi A., Homogenization of Multiple Integrals, Oxford Lecture Ser. Math. Appl., vol. 12, Clarendon Press, Oxford, 1998. Zbl0911.49010MR1684713
- [15] Cioranescu D., Murat F., Un terme étrange venu d'ailleurs I and II, Nonlinear Partial Differential Equations and Their ApplicationsII (1983) 98-138. Zbl0496.35030MR652509
- [16] Dal Maso G., Murat F., Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators, Ann. Sc. Norm. Super. Pisa7 (1997) 765-803. Zbl0899.35007
- [17] Fan X., Zhang Q., Existence of solutions for -Laplacian Dirichlet problem, J. Nonlinear Anal.52 (2003) 1843-1852. Zbl1146.35353MR1954585
- [18] Harjulehto P., Hästö P., Koskenoja M., Varonen S., The Dirichlet energy integral and variable exponents Sobolev spaces with zero boundary values, Potential Anal.25 (2006) 205-222. Zbl1120.46016MR2255345
- [19] Hudzik H., On generalized Orlicz–Sobolev space, Funct. Approx. Comment. Math.4 (1976) 37-51. Zbl0355.46012MR442671
- [20] Khruslov E.Ya., Pankratov L., Homogenization of the Dirichlet variational problems in Orlicz–Sobolev spaces, Fields Inst. Commun.25 (2000) 345-366. Zbl0961.49010MR1759552
- [21] Kováčik O., Rákosník J., On spaces and , Czechoslovak Math. J.41 (1991) 592-618. Zbl0784.46029MR1134951
- [22] Kozlov S.M., Geometric aspects of averaging, Russian Math. Surveys44 (1989) 91-144. Zbl0706.49029MR998362
- [23] Ladyzhenskaya O.A., Ural'tseva N.N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1973. Zbl0164.13002MR244627
- [24] Chen Y., Levine S., Rao M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math.66 (4) (2006) 1383-1406. Zbl1102.49010MR2246061
- [25] Marchenko V.A., Khruslov E.Ya., Boundary value problems with fine-grained boundary, Mat. Sb.65 (3) (1964) 458-472. Zbl0171.08701MR178156
- [26] Marchenko V.A., Khruslov E.Ya., Homogenization of Partial Differential Equations, Birkhäuser, Boston, 2006. Zbl1113.35003MR2182441
- [27] Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer-Verlag, Berlin, 1983. Zbl0557.46020MR724434
- [28] Nguetseng G., Nnang H., Homogenization of nonlinear monotone operators beyond the periodic setting, Electron. J. Differential Equations36 (2003) 1-24. Zbl1032.35031MR1971022
- [29] Pankov A., G-Convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Academic, Dordrecht, 1997. Zbl0883.35001MR1482803
- [30] Rajagopal K., Ru̇žička M., Mathematical modelling of electro-rheological fluids, Contin. Mech. Thermodyn.13 (2001) 59-78. Zbl0971.76100
- [31] Ru̇žička M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer, Berlin, 2000. Zbl0962.76001MR1810360
- [32] Šarapudinov I.I., The topology of the space , Mat. Zametki26 (1979) 613-632. Zbl0437.46024MR552723
- [33] Skrypnik I.V., Methods of Investigation of Nonlinear Elliptic Boundary Value Problems, Nauka, Moscow, 1990. Zbl0743.35026MR1131775
- [34] Zhikov V.V., Lavrentiev effect and the averaging of nonlinear variational problems, Differ. Equ.27 (1991) 32-39. Zbl0749.49022MR1133509
- [35] Zhikov V.V., On the passage to the limit in nonlinear variational problems, Math. Sb.183 (1992) 47-84. Zbl0767.35021MR1187249
- [36] Zhikov V.V., Lavrentiev phenomenon and homogenization for some variational problems, C. R. Acad. Sci. Paris Sér. I316 (1993) 435-439. Zbl0783.35005MR1209262
- [37] Zhikov V.V., On Lavrentiev's phenomenon, Russ. J. Math. Phys.3 (1995) 249-269. Zbl0910.49020MR1350506
- [38] Zhikov V.V., Kozlov S.M., Oleinik O.A., Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin/Heidelberg/New York, 1994. Zbl0838.35001MR1329546
- [39] Zhikov V.V., On some variational problems, Russ. J. Math. Phys.5 (1997) 105-116. Zbl0917.49006MR1486765
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.