Controllability on the group of diffeomorphisms
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 6, page 2503-2509
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAgrachev, A. A., and Caponigro, M.. "Controllability on the group of diffeomorphisms." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2503-2509. <http://eudml.org/doc/78944>.
@article{Agrachev2009,
author = {Agrachev, A. A., Caponigro, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {controllability; diffeomorphisms; geometric control},
language = {eng},
number = {6},
pages = {2503-2509},
publisher = {Elsevier},
title = {Controllability on the group of diffeomorphisms},
url = {http://eudml.org/doc/78944},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Agrachev, A. A.
AU - Caponigro, M.
TI - Controllability on the group of diffeomorphisms
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2503
EP - 2509
LA - eng
KW - controllability; diffeomorphisms; geometric control
UR - http://eudml.org/doc/78944
ER -
References
top- [1] Agrachev A.A., Sachkov Yu.L., Control Theory from the Geometric Viewpoint, Springer-Verlag, Berlin, 2004, xiv+412 pp. Zbl1062.93001MR2062547
- [2] Chow W.-L., Über Systeme von linearen partiellen Differentialgleichungen erster Ordinung, Math. Ann.117 (1939) 98-105. Zbl65.0398.01MR1880JFM65.0398.01
- [3] Khesin B., Lee P., A nonholonomic Moser theorem and optimal mass transport, J. Symplectic Geom.7 (4) (2009) 1-34. Zbl1247.58005MR2551999
- [4] Kuranishi M., On everywhere dense imbedding of free groups in Lie groups, Nagoya Math. J.2 (1951) 63-71. Zbl0045.31003MR41145
- [5] Lobry C., Une propriété générique des couples de champs de vecteurs, Czechoslovak Math. J.22 (97) (1972) 230-237. Zbl0242.58007MR300305
- [6] Palis J., Smale S., Structural stability theorems, in: Global Analysis, Berkeley, CA, 1968, Proc. Sympos. Pure Math., vol. XIV, Amer. Math. Soc., 1970, pp. 223-231. Zbl0214.50702MR267603
- [7] Rashevsky P.K., About connecting two points of complete nonholonomic space by admissible curve, Uch. Zap. Ped. Inst. Libknehta2 (1938) 83-94.
- [8] Sussmann H.J., Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc.180 (1973) 171-188. Zbl0274.58002MR321133
- [9] Thurston W., Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc.80 (1974) 304-307. Zbl0295.57014MR339267
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.