The Mackey-Arens and Hahn-Banach theorems for spaces over valued fields

Jerzy Kąkol

Annales mathématiques Blaise Pascal (1995)

  • Volume: 2, Issue: 1, page 147-153
  • ISSN: 1259-1734

How to cite

top

Kąkol, Jerzy. "The Mackey-Arens and Hahn-Banach theorems for spaces over valued fields." Annales mathématiques Blaise Pascal 2.1 (1995): 147-153. <http://eudml.org/doc/79110>.

@article{Kąkol1995,
author = {Kąkol, Jerzy},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Mackey-Arens and Hahn-Banach theorems; spherical completeness of a non- Archimedean complete non-trivially valued field},
language = {eng},
number = {1},
pages = {147-153},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {The Mackey-Arens and Hahn-Banach theorems for spaces over valued fields},
url = {http://eudml.org/doc/79110},
volume = {2},
year = {1995},
}

TY - JOUR
AU - Kąkol, Jerzy
TI - The Mackey-Arens and Hahn-Banach theorems for spaces over valued fields
JO - Annales mathématiques Blaise Pascal
PY - 1995
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 2
IS - 1
SP - 147
EP - 153
LA - eng
KW - Mackey-Arens and Hahn-Banach theorems; spherical completeness of a non- Archimedean complete non-trivially valued field
UR - http://eudml.org/doc/79110
ER -

References

top
  1. [1] Dierolf S.. A note on lifting of linear and locally convex topologies on a quotient spaceCollectanea Math. vol 311980 p 193-198 Zbl0453.46002MR621724
  2. [2] De Grande-De Kimpe N. and Perez-Garcia C.Weakly closed subspaces and the Hahn-Banach extension property in p-adic analysisIndag. Math. vol 501988 p 253-261 Zbl0678.46055MR964832
  3. [3] Ingleton W.The Hahn-Banach Theorem for non-archimedean valued fieldsProc. Cambridge Phil. Soc. vol 481952 p 41-45 Zbl0046.12001MR45939
  4. [4] Kąkol J.The Mackey-Arens theorem for non-locally convex spacesCollectanea Math. vol 411990 p 129-132 Zbl0745.46009MR1149649
  5. [5] KąkolRemarks on spherical completeness of non-archimedean valued fieldsIndag. Math. Zbl0826.46072MR1298778
  6. [6] Kąkol J.The weak basis theorem for K-Banach spacesBull. Soc. Belg. vol 451993 p 1-4 Zbl0786.46059MR1314928
  7. [7] Kąkol J.The Mackey-Arens property for spaces over valued fieldsBull. Acad. Polon Sci. to appear Zbl0819.46062
  8. [8] Martinez-Maurica J. and Perez-Garcia C.The Hahn-Banach extension property in a class of normed spacesQuaestiones Math. vol 81986 p 335-341 Zbl0603.46070MR854055
  9. [9] Martinez-Maurica J. and Perez-Garcia C.The three-space problem for a class of normed spacesBull. Math. Soc. Belg. vol 391987 p 209-214 Zbl0629.46068MR901603
  10. [10] Monna A.F.Analyse non-archimedienneLecture Notes in Math. 1970SpringerBerlin Zbl0203.11501MR295033
  11. [11] Prolla J.B.Topics in Functional Analysis over valued Division Rings Math.Studies1982AmsterdamNorth-Holland Zbl0506.46059MR688308
  12. [12] Van Rooij A.C.M.Non-Archimedean Functional AnalysisMarcel Dekker1978 New York Zbl0396.46061
  13. [13] Schikhof W.H.Locally convex spaces over non-spherically complete valued fieldsBull. Soc. Math. Belg. vol 381986 p 187-224 Zbl0615.46071MR871313
  14. [14] Van Tiel I.Espaces localement K-convexesIndag. Math vol 271965 p 249-289 Zbl0133.06502MR179593

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.