A spectral theorem for matrices over fields of power series

Hans A. Keller; Herminia Ochsenius A.

Annales mathématiques Blaise Pascal (1995)

  • Volume: 2, Issue: 1, page 169-179
  • ISSN: 1259-1734

How to cite

top

Keller, Hans A., and Ochsenius A., Herminia. "A spectral theorem for matrices over fields of power series." Annales mathématiques Blaise Pascal 2.1 (1995): 169-179. <http://eudml.org/doc/79112>.

@article{Keller1995,
author = {Keller, Hans A., Ochsenius A., Herminia},
journal = {Annales mathématiques Blaise Pascal},
keywords = {non-archimedean valued fields; symmetric matrices; orthogonal diagonalization; formal power series; eigenvalues},
language = {eng},
number = {1},
pages = {169-179},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {A spectral theorem for matrices over fields of power series},
url = {http://eudml.org/doc/79112},
volume = {2},
year = {1995},
}

TY - JOUR
AU - Keller, Hans A.
AU - Ochsenius A., Herminia
TI - A spectral theorem for matrices over fields of power series
JO - Annales mathématiques Blaise Pascal
PY - 1995
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 2
IS - 1
SP - 169
EP - 179
LA - eng
KW - non-archimedean valued fields; symmetric matrices; orthogonal diagonalization; formal power series; eigenvalues
UR - http://eudml.org/doc/79112
ER -

References

top
  1. [1] W.A. Adkins, Normal Matrices over Hermitian Discrete Valuation Rings, Linear Algebra and its Applications 157 (1991), 165-174. Zbl0733.15008MR1123864
  2. [2] B. Diarra, Remarque sur les matrices orthogonales (resp. symétriques) à coefficients p-adiques, Ann. Sci.Univ. Blaise Pascal, Ser. Math., Fasc. 26 (1990), 31-50. Zbl0731.15019MR1112636
  3. [3] H. Gross and U.M. Künzi, On a Class of Orthomodular Quadratic Spaces, L'Enseignement Mathématique, 31 (1985), 187-212. Zbl0603.46030MR819350
  4. [4] H. Keller and H. Ochsenius, Algebras of Bounded Operators on Non-classical Orthomodular Spaces, Int. Journal of Theor. Physics, Vol. 33, No. 1 (1994), 1-11. Zbl0809.46094MR1263295
  5. [5] P. Ribenboim, Théorie des Valuations, Les Presses de l'Université de Montreal, 1964. Zbl0139.26201MR249425
  6. [6] O.F.G. Schilling, The Theory of Valuations, Amer. Math. Soc. Surveys, Providence, 1950. Zbl0037.30702MR43776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.