On isometries and compact operators between p-adic Banach spaces
Annales mathématiques Blaise Pascal (1995)
- Volume: 2, Issue: 1, page 217-224
- ISSN: 1259-1734
Access Full Article
topHow to cite
topReferences
top- [1] N. De Grande-De Kimpe, Structure theorems for locally K-convex spaces, Proc. Kon. Ned. Akad. v. Wet. A80 (1977),11-22. Zbl0343.46005MR430720
- [2] N. De Grande-De Kimpeand C. Perez-Garcia, On the non-archimedean space C(E,F), (preprint).
- [3] T. Kiyosawa, On spaces of compact operators in non- archimedean Banach spaces, Canad. Math. Bull.32 (4) (1989), 450-458. Zbl0685.46053MR1019411
- [4] C. Perez-Garcia and W.H. Schikhof, Non-reflexive and non-spherically complete subspaces of the p-adic space l∞, To appear in Indagationes Mathematicae. Zbl0834.46063MR1324442
- [5] =======, Tensor product and p-adic vector valued continuous functions, In : p-adic Functional Analysis, N. De Grande-De Kimpe, S. Navarro and W.H. Schikhof, Universidad de Santiago, Chile (1994), 111-120.
- [6] W.H. Schikhof, More on duality between p-adic Banach spaces and compactoids, Report 9011, Department of Mathematics, Catholic University, Nijmegen, The Netherlands (1993), 1-43. MR1351151
- [7] A.C.M. van Rooij, Non-archimedean Functional Analysis, Marcel Dekker, New York, 1978. Zbl0396.46061MR512894