Restricted range simultaneous approximation and interpolation with preservation of the norm

J.B. Prolla; S. Navarro

Annales mathématiques Blaise Pascal (1995)

  • Volume: 2, Issue: 1, page 225-235
  • ISSN: 1259-1734

How to cite

top

Prolla, J.B., and Navarro, S.. "Restricted range simultaneous approximation and interpolation with preservation of the norm." Annales mathématiques Blaise Pascal 2.1 (1995): 225-235. <http://eudml.org/doc/79118>.

@article{Prolla1995,
author = {Prolla, J.B., Navarro, S.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {complete non-Archimedean non-trivially valued division ring; ring of all continuous functions; interpolating family; simultaneous approximation and interpolation with preservation of the norm; von Neumann subsets; restricted range polynomial algebras},
language = {eng},
number = {1},
pages = {225-235},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Restricted range simultaneous approximation and interpolation with preservation of the norm},
url = {http://eudml.org/doc/79118},
volume = {2},
year = {1995},
}

TY - JOUR
AU - Prolla, J.B.
AU - Navarro, S.
TI - Restricted range simultaneous approximation and interpolation with preservation of the norm
JO - Annales mathématiques Blaise Pascal
PY - 1995
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 2
IS - 1
SP - 225
EP - 235
LA - eng
KW - complete non-Archimedean non-trivially valued division ring; ring of all continuous functions; interpolating family; simultaneous approximation and interpolation with preservation of the norm; von Neumann subsets; restricted range polynomial algebras
UR - http://eudml.org/doc/79118
ER -

References

top
  1. [1 ] R.I. Jewett. A variation on the Stone -Weierstrass theorem, Proc. Amer. Math Soc.14 (1963), 690 - 693. Zbl0122.35004MR152882
  2. [2 ] I. Kaplansky. Topological rings, Amer. J. Math69 (1947), 153 -183. Zbl0034.16604MR19596
  3. [3 ] I. Kaplansky, The Weierstrass theorem in fields with valuations. Proc. Amer. Math. Soc.1 (1950), 356-357. Zbl0038.07002MR35760
  4. [4 ] J.B. Prolla, Topics in Functional Analysis over valued division rings, North-Holland Math. Studies 77 (Notas de Matemática89), North-Holland Publ. Co., Amsterdam, 1982. Zbl0506.46059MR688308
  5. [5 ] J.B. Prolla, On von Neumann's variation of the Weierstrass-Stone theorem, Numer. Funct. Anal. and Optimiz.13 (1992), 349-353. Zbl0771.54013MR1179363
  6. [6 ] J.B. Prolla. The Weierstrass-Stone theorem in absolute valued division rings, Indag. Mathem., N.S.4 (1993), 71-78. Zbl0778.46050MR1213324
  7. [7 ] T.J. Ransford, A short elementary proof of the Bishop-Stone-Weierstrass theorem. Math. Proc. Camb. Phil. Soc.96 (1984), 309-311. Zbl0537.41018MR757664
  8. [8 ] J. von Neumann, Probabilistic logics and the synthesis of reliable organisms from unreliable components. In Automata Studies. , C.E. Shannon, J. Mc Carthy, Annals of Math. Studies34, Princeton Univ. Press, Princeton N.J., 1956, pp. 43-98. MR77479

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.