( t -)orthogonality in p -adic Banach spaces

Sabine Borrey

Annales mathématiques Blaise Pascal (1995)

  • Volume: 2, Issue: 1, page 61-71
  • ISSN: 1259-1734

How to cite

top

Borrey, Sabine. "($t$-)orthogonality in $p$-adic Banach spaces." Annales mathématiques Blaise Pascal 2.1 (1995): 61-71. <http://eudml.org/doc/79131>.

@article{Borrey1995,
author = {Borrey, Sabine},
journal = {Annales mathématiques Blaise Pascal},
keywords = {orthogonality; distances to convex hulls; absolutely convex; weakly - compact subset; Hahn-Banach extension property; compactoidness},
language = {eng},
number = {1},
pages = {61-71},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {($t$-)orthogonality in $p$-adic Banach spaces},
url = {http://eudml.org/doc/79131},
volume = {2},
year = {1995},
}

TY - JOUR
AU - Borrey, Sabine
TI - ($t$-)orthogonality in $p$-adic Banach spaces
JO - Annales mathématiques Blaise Pascal
PY - 1995
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 2
IS - 1
SP - 61
EP - 71
LA - eng
KW - orthogonality; distances to convex hulls; absolutely convex; weakly - compact subset; Hahn-Banach extension property; compactoidness
UR - http://eudml.org/doc/79131
ER -

References

top
  1. [1] Borrey, S. : Weakly c'-compact subsets of non-archimedean Banach spaces over a spherically complete field. Collect. Math. (Univ. de Barcelona) 40, 1, 31-53. (1989) Zbl0706.46060MR1078090
  2. [2] Borrey, S. : On the Krein-Milman theorem in vector spaces over a non-archimedean valued field K. Indag. Mathem., N.S., 1 (2), 169-178. (1990) Zbl0755.46043MR1060824
  3. [3] Borrey, S. : Weak c'-compactness in (strongly) polar Banach spaces over a non-archimedean, densely valued field. Lecture Notes in pure and applied Mathematics, Vol. 137, entitled P-adic functional analysis and edited by J.M. Bayod, J. Martinez-Maurica and N. De grande-De Kimpe, 31-46. (1992) Zbl0787.46066MR1152567
  4. [4] Borrey, S. : Non-archimedean Banach spaces over trivially valued fields. P-adic functional analysis, Editorial Universidad de Santiago, Chile, 17 - 31. (1994) 
  5. [5] Borrey, S. and Schikhof, W.H. : Weak and strong c-compactness in non- archimedean banach spaces. Simon Stevin, a quarterly journal of Pure and applied Mathematics, Vol. 67 (1993), Supplement. (1993) Zbl0812.46077MR1286243
  6. [6] N. DE GRANDE-DE KIMPE, and C. Perez-Garcia, : Weakly closed subspaces and the Hahn-Banach extension property in p-adic analysis. Proc. of the Kon. Ned. Akad. v. Wetenschappen, A91 (3), 253-261. (1988) Zbl0678.46055MR964832
  7. [7] N. DE GRANDE-DE KIMPE, C. Perez-Garcia, and W.H. Schikhof, : P-adic t-frames and (FM) spaces. Canadian Math. Bull., Vol. 35 (4), 475 - 483. (1992) Zbl0739.46057MR1191506
  8. [8] Schikhof, W.H. : Weak c'-compactness in p-adic Banach spaces. Report 8648, Dep. of Math., Catholic University, Toemooiveld, 6525 EDNijmegen, The Netherlands. (1986) MR1103817
  9. [9] Schikhof, W.H. : Locally convex spaces over non-spherically complete valued fields. Bull. Soc. Math. Belg., Série B, 38, 187-244. (1986) Zbl0615.46071MR871313
  10. [10] Schikhof, W.H. : A complementary variant of c'-compactness in p-adic functional analysis. Report 8647, same address as [8]. (1986) 
  11. [11] A.C.M. Van Rooij, : Notes on p-adic Banach spaces, I - V. Report 7633, same address as [8]. (1976) 
  12. [12] A.C.M. Van Rooij, : Non-archimedean functional analysis. Pure and applied Mathematics, A program of Monographs, Textbooks and lecture notes, Marcel Dekker Inc. (1978) Zbl0396.46061MR512894

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.