Projections de mouvements browniens régularisés via l'action d'un groupe de Lie hilbertien
Annales mathématiques Blaise Pascal (1996)
- Volume: 3, Issue: 1, page 103-110
- ISSN: 1259-1734
Access Full Article
topHow to cite
topPaycha, S., and Arnaudon, M.. "Projections de mouvements browniens régularisés via l'action d'un groupe de Lie hilbertien." Annales mathématiques Blaise Pascal 3.1 (1996): 103-110. <http://eudml.org/doc/79141>.
@article{Paycha1996,
author = {Paycha, S., Arnaudon, M.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {gauge theoretical problems; Brownian motions; Lie group},
language = {fre},
number = {1},
pages = {103-110},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Projections de mouvements browniens régularisés via l'action d'un groupe de Lie hilbertien},
url = {http://eudml.org/doc/79141},
volume = {3},
year = {1996},
}
TY - JOUR
AU - Paycha, S.
AU - Arnaudon, M.
TI - Projections de mouvements browniens régularisés via l'action d'un groupe de Lie hilbertien
JO - Annales mathématiques Blaise Pascal
PY - 1996
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 3
IS - 1
SP - 103
EP - 110
LA - fre
KW - gauge theoretical problems; Brownian motions; Lie group
UR - http://eudml.org/doc/79141
ER -
References
top- 1. M. Arnaudon, S. Paycha, Factorization of semi-martingales on infinite dimensional principal bundles, Stochastics and Stochastic Reports, Vol. 53, p.81-107 Zbl0853.58110
- 2. M. Arnaudon, S. Paycha, Regularisable and minimal orbits for group actions in infinite dimensions , Manuscript 1995 Zbl0938.58008
- 3. M. Arnaudon, S. Paycha, The geometric and physical relevence of some stochastic tools on Hilbert manifolds, Manuscript 1995
- 4. M. Arnaudon, Semi-martingates dans les espaces homogènes, Ann.Inst. Henri Poincaré, Vol 29, n.2, 1993, p 269-288 Zbl0779.60045MR1227420
- M. Arnaudon, Connexions et martingales dans les groupes de Lie, Séminaire de Probabilité XXV
- 5. K.D. Elworthy, W.S. Kendall, Factorisation of Harmonic maps and Brownian motions, in "From local time to global geometry, Physics and Control", ed.Elworthy K.D. , Pitman/Longman p.75-83 (1986) Zbl0615.60073MR894524
- 6. S. Albeverio, R. Hoegh-Krohn, D. Testard, A. Vershik, Factorial representations of path groups, J. F. A.51, p. 115-131 (1983) Zbl0522.22013MR699230
- 7. B.Y. Chen, Geometry of submanifolds Pure and Applied Mathematics, A Series of monographs and textbooks, N.Y.1973 Zbl0262.53036MR353212
- 8. J. Cheeger, D.G. Ebin, Comparison Theorems in Riemannian Geometry, North Holland Mathematical Library, North Holland Publishing Company, 1975 Zbl0309.53035MR458335
- 9. W.Y. Hsiang, On compact homogeneous minimal submanifolds, Proc.Nat. Acad. Sci. USA56 (1966) p 5-6 Zbl0178.55904MR205203
- 10. N. Berline, E. Getzler, M. Vergne, Heta-Kernels and Dirac Operators, Springer Verlag (1992) Zbl0744.58001MR1215720
- 11. C. King, C.L. TerngVolume and minimality of submanifolds in path space, in "Global Analysis and Modern Mathematics", K. Uhlenbeck, Publish or Perish (1994)
- 12. Y. Maeda, S. Rosenberg, P. Tondeur, The mean curvature of gauge orbits, in "Global Analysis and Modern Mathematics", K. Uhlenbeck, Publish or Perish (1994) Zbl0932.58003MR1278755
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.