Projections de mouvements browniens régularisés via l'action d'un groupe de Lie hilbertien

S. Paycha; M. Arnaudon

Annales mathématiques Blaise Pascal (1996)

  • Volume: 3, Issue: 1, page 103-110
  • ISSN: 1259-1734

How to cite

top

Paycha, S., and Arnaudon, M.. "Projections de mouvements browniens régularisés via l'action d'un groupe de Lie hilbertien." Annales mathématiques Blaise Pascal 3.1 (1996): 103-110. <http://eudml.org/doc/79141>.

@article{Paycha1996,
author = {Paycha, S., Arnaudon, M.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {gauge theoretical problems; Brownian motions; Lie group},
language = {fre},
number = {1},
pages = {103-110},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Projections de mouvements browniens régularisés via l'action d'un groupe de Lie hilbertien},
url = {http://eudml.org/doc/79141},
volume = {3},
year = {1996},
}

TY - JOUR
AU - Paycha, S.
AU - Arnaudon, M.
TI - Projections de mouvements browniens régularisés via l'action d'un groupe de Lie hilbertien
JO - Annales mathématiques Blaise Pascal
PY - 1996
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 3
IS - 1
SP - 103
EP - 110
LA - fre
KW - gauge theoretical problems; Brownian motions; Lie group
UR - http://eudml.org/doc/79141
ER -

References

top
  1. 1. M. Arnaudon, S. Paycha, Factorization of semi-martingales on infinite dimensional principal bundles, Stochastics and Stochastic Reports, Vol. 53, p.81-107 Zbl0853.58110
  2. 2. M. Arnaudon, S. Paycha, Regularisable and minimal orbits for group actions in infinite dimensions , Manuscript 1995 Zbl0938.58008
  3. 3. M. Arnaudon, S. Paycha, The geometric and physical relevence of some stochastic tools on Hilbert manifolds, Manuscript 1995 
  4. 4. M. Arnaudon, Semi-martingates dans les espaces homogènes, Ann.Inst. Henri Poincaré, Vol 29, n.2, 1993, p 269-288 Zbl0779.60045MR1227420
  5. M. Arnaudon, Connexions et martingales dans les groupes de Lie, Séminaire de Probabilité XXV 
  6. 5. K.D. Elworthy, W.S. Kendall, Factorisation of Harmonic maps and Brownian motions, in "From local time to global geometry, Physics and Control", ed.Elworthy K.D. , Pitman/Longman p.75-83 (1986) Zbl0615.60073MR894524
  7. 6. S. Albeverio, R. Hoegh-Krohn, D. Testard, A. Vershik, Factorial representations of path groups, J. F. A.51, p. 115-131 (1983) Zbl0522.22013MR699230
  8. 7. B.Y. Chen, Geometry of submanifolds Pure and Applied Mathematics, A Series of monographs and textbooks, N.Y.1973 Zbl0262.53036MR353212
  9. 8. J. Cheeger, D.G. Ebin, Comparison Theorems in Riemannian Geometry, North Holland Mathematical Library, North Holland Publishing Company, 1975 Zbl0309.53035MR458335
  10. 9. W.Y. Hsiang, On compact homogeneous minimal submanifolds, Proc.Nat. Acad. Sci. USA56 (1966) p 5-6 Zbl0178.55904MR205203
  11. 10. N. Berline, E. Getzler, M. Vergne, Heta-Kernels and Dirac Operators, Springer Verlag (1992) Zbl0744.58001MR1215720
  12. 11. C. King, C.L. TerngVolume and minimality of submanifolds in path space, in "Global Analysis and Modern Mathematics", K. Uhlenbeck, Publish or Perish (1994) 
  13. 12. Y. Maeda, S. Rosenberg, P. Tondeur, The mean curvature of gauge orbits, in "Global Analysis and Modern Mathematics", K. Uhlenbeck, Publish or Perish (1994) Zbl0932.58003MR1278755

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.