Singularités des fonctions de Green hypoelliptiques
Gérard Ben Arous; Mihai Gradinaru
Annales mathématiques Blaise Pascal (1996)
- Volume: 3, Issue: 1, page 23-32
- ISSN: 1259-1734
Access Full Article
topHow to cite
topBen Arous, Gérard, and Gradinaru, Mihai. "Singularités des fonctions de Green hypoelliptiques." Annales mathématiques Blaise Pascal 3.1 (1996): 23-32. <http://eudml.org/doc/79151>.
@article{BenArous1996,
author = {Ben Arous, Gérard, Gradinaru, Mihai},
journal = {Annales mathématiques Blaise Pascal},
keywords = {hypoelliptic operator; Green function},
language = {fre},
number = {1},
pages = {23-32},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Singularités des fonctions de Green hypoelliptiques},
url = {http://eudml.org/doc/79151},
volume = {3},
year = {1996},
}
TY - JOUR
AU - Ben Arous, Gérard
AU - Gradinaru, Mihai
TI - Singularités des fonctions de Green hypoelliptiques
JO - Annales mathématiques Blaise Pascal
PY - 1996
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 3
IS - 1
SP - 23
EP - 32
LA - fre
KW - hypoelliptic operator; Green function
UR - http://eudml.org/doc/79151
ER -
References
top- [A] R. Azencott, : Formule de Taylor stochastique et développements asymptotiques d'intégrales de Feynmann, Dans: Azéma, J., Yor, M.Seminaire de Probabilités XVI. Supplément: Géométrie différentielle stochastique (Lect. Notes Math. vol. 921, pp. 237-284), Berlin Heidelberg , New York: Springer1982 Zbl0484.60064MR658728
- [BA1] Ben Arous, G.: Flots et séries de Taylor stochastiques, Probab. Th. Rel. Fields81, pp. 29-77 (1989) Zbl0639.60062MR981567
- [BA2] Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale, Ann. Inst. Fourier39, pp. 73-99 (1989) Zbl0659.35024MR1011978
- [BA-G] Ben Arous, G., Gradinaru, M.: Singularities of hypoelliptic Green functions, Preprint LMENS-95-19, soumis au "Potential Analysis", 1995 Zbl0909.60058MR1625572
- [BA-Le] Ben Arous, G., Léandre, R.: Décroissance exponentielle du noyau de la chaleur sur la diagonale I,II, Probab. Th. Rel. Fields90, pp. 175-202377-402, (1991) Zbl0734.60026MR1128069
- [B-Gav-Gr] Beals, R., Gaveau, B., Greiner, P.C.: Solution fondamentale pour des varietés de Cauchy-Riemann, Exposés au Seminaire d'Analyse, Institut "Henri Poincaré", 1993
- [Ca] Castell, F.: Asymptotic expansion of stochastic flows, Probab. Th. Rel. Fields96, pp. 225-239 (1993) Zbl0794.60054MR1227033
- [CM-LG] Chaleyat-Maurel, M., Le Gall, J.-F.: Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes, Probab. Th. Rel. Fields83, pp. 219-264 (1989) Zbl0686.60058MR1012500
- [Fo] Folland, G.B.: A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc.79, pp. 373-376 (1973) Zbl0256.35020MR315267
- [Fo-S] Folland, G.B., Stein, E.M.: Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math.27, pp. 429-522 (1974) Zbl0293.35012MR367477
- [Fe-Sa] Fefferman, C.L., Sánchez-Calle, A.: Fundamental solutions for second order subelliptic operators, Ann. Math.124, pp. 247-272 (1986) Zbl0613.35002MR855295
- [G] M. Gradinaru, : Fonctions de Green et support de diffusions hypoelliptiques, Thèse, Université de Paris-Sud, Orsay, 1995
- [Gav] Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math.139, pp. 96-153 (1977) Zbl0366.22010MR461589
- [Gr1] Greiner, P.C.: A fundamental solution for a nonelliptic partial differential operator, Canad. Jour. Math.31, pp. 1107-1120 (1979) Zbl0475.35003MR546962
- [Gr2] Greiner, P.C.: On second order hypoelliptic differential operators and the ∂-Neumann problem, In: Diedrich, KComplex analysis, Proceedings of Workshop at Wuppertal 1990, pp. 134-142, Braunschweig: Vieweg1991 Zbl0747.58045MR1122172
- [Gr-S] Greiner, P.C., Stein, E.M.: On the solvability of some differential operators of type □b, Dans: Several complex variables, Proceedings of the conference at Cortona 1976-1977, pp. 106-165, Pisa: Scuola Normale Superiore1978 Zbl0434.35007MR681306
- [H] L. Hörmander, : Hypoelliptic second order differential equations, Acta Math.119, pp. 147-171 (1967) Zbl0156.10701MR222474
- [J-Sa] Jerison, D., Sánchez-Calle, A.: Subelliptic second order differential operators, Dans: Berenstein, C.A (ed.)Complex analysis III, Proceedings of the Special Year at University of Maryland1985-1986, (Lect. Notes Math. vol. 1277 pp. 46-77), , BerlinHeidelberg1987SpringerNew York Zbl0634.35017MR922334
- [Le] Léandre, R.: Développement asymptotique de la densité d'une diffusion dégénérée, Forum Math.4, pp. 45-75 (1992) Zbl0749.60054MR1142473
- [N-S-W] Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I Basic properties. Acta Math.155, pp. 103-147 (1985) Zbl0578.32044MR793239
- [Sa] Sánchez-Calle, A.: Fundamental solutions and geometry of the sum of square of vector fields, Invent. math.78, pp. 143-160 (1984) Zbl0582.58004MR762360
- [Sz] Sznitman, A.S.: Some bounds and limiting results for the measure of the Wiener sausage of small radius associated with elliptic diffusions, Stoch. Proc. Appl.25, pp. 1-25 (1987). Zbl0628.60080MR904262
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.