Singularités des fonctions de Green hypoelliptiques

Gérard Ben Arous; Mihai Gradinaru

Annales mathématiques Blaise Pascal (1996)

  • Volume: 3, Issue: 1, page 23-32
  • ISSN: 1259-1734

How to cite

top

Ben Arous, Gérard, and Gradinaru, Mihai. "Singularités des fonctions de Green hypoelliptiques." Annales mathématiques Blaise Pascal 3.1 (1996): 23-32. <http://eudml.org/doc/79151>.

@article{BenArous1996,
author = {Ben Arous, Gérard, Gradinaru, Mihai},
journal = {Annales mathématiques Blaise Pascal},
keywords = {hypoelliptic operator; Green function},
language = {fre},
number = {1},
pages = {23-32},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Singularités des fonctions de Green hypoelliptiques},
url = {http://eudml.org/doc/79151},
volume = {3},
year = {1996},
}

TY - JOUR
AU - Ben Arous, Gérard
AU - Gradinaru, Mihai
TI - Singularités des fonctions de Green hypoelliptiques
JO - Annales mathématiques Blaise Pascal
PY - 1996
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 3
IS - 1
SP - 23
EP - 32
LA - fre
KW - hypoelliptic operator; Green function
UR - http://eudml.org/doc/79151
ER -

References

top
  1. [A] R. Azencott, : Formule de Taylor stochastique et développements asymptotiques d'intégrales de Feynmann, Dans: Azéma, J., Yor, M.Seminaire de Probabilités XVI. Supplément: Géométrie différentielle stochastique (Lect. Notes Math. vol. 921, pp. 237-284), Berlin Heidelberg , New York: Springer1982 Zbl0484.60064MR658728
  2. [BA1] Ben Arous, G.: Flots et séries de Taylor stochastiques, Probab. Th. Rel. Fields81, pp. 29-77 (1989) Zbl0639.60062MR981567
  3. [BA2] Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale, Ann. Inst. Fourier39, pp. 73-99 (1989) Zbl0659.35024MR1011978
  4. [BA-G] Ben Arous, G., Gradinaru, M.: Singularities of hypoelliptic Green functions, Preprint LMENS-95-19, soumis au "Potential Analysis", 1995 Zbl0909.60058MR1625572
  5. [BA-Le] Ben Arous, G., Léandre, R.: Décroissance exponentielle du noyau de la chaleur sur la diagonale I,II, Probab. Th. Rel. Fields90, pp. 175-202377-402, (1991) Zbl0734.60026MR1128069
  6. [B-Gav-Gr] Beals, R., Gaveau, B., Greiner, P.C.: Solution fondamentale pour des varietés de Cauchy-Riemann, Exposés au Seminaire d'Analyse, Institut "Henri Poincaré", 1993 
  7. [Ca] Castell, F.: Asymptotic expansion of stochastic flows, Probab. Th. Rel. Fields96, pp. 225-239 (1993) Zbl0794.60054MR1227033
  8. [CM-LG] Chaleyat-Maurel, M., Le Gall, J.-F.: Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes, Probab. Th. Rel. Fields83, pp. 219-264 (1989) Zbl0686.60058MR1012500
  9. [Fo] Folland, G.B.: A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc.79, pp. 373-376 (1973) Zbl0256.35020MR315267
  10. [Fo-S] Folland, G.B., Stein, E.M.: Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math.27, pp. 429-522 (1974) Zbl0293.35012MR367477
  11. [Fe-Sa] Fefferman, C.L., Sánchez-Calle, A.: Fundamental solutions for second order subelliptic operators, Ann. Math.124, pp. 247-272 (1986) Zbl0613.35002MR855295
  12. [G] M. Gradinaru, : Fonctions de Green et support de diffusions hypoelliptiques, Thèse, Université de Paris-Sud, Orsay, 1995 
  13. [Gav] Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math.139, pp. 96-153 (1977) Zbl0366.22010MR461589
  14. [Gr1] Greiner, P.C.: A fundamental solution for a nonelliptic partial differential operator, Canad. Jour. Math.31, pp. 1107-1120 (1979) Zbl0475.35003MR546962
  15. [Gr2] Greiner, P.C.: On second order hypoelliptic differential operators and the ∂-Neumann problem, In: Diedrich, KComplex analysis, Proceedings of Workshop at Wuppertal 1990, pp. 134-142, Braunschweig: Vieweg1991 Zbl0747.58045MR1122172
  16. [Gr-S] Greiner, P.C., Stein, E.M.: On the solvability of some differential operators of type □b, Dans: Several complex variables, Proceedings of the conference at Cortona 1976-1977, pp. 106-165, Pisa: Scuola Normale Superiore1978 Zbl0434.35007MR681306
  17. [H] L. Hörmander, : Hypoelliptic second order differential equations, Acta Math.119, pp. 147-171 (1967) Zbl0156.10701MR222474
  18. [J-Sa] Jerison, D., Sánchez-Calle, A.: Subelliptic second order differential operators, Dans: Berenstein, C.A (ed.)Complex analysis III, Proceedings of the Special Year at University of Maryland1985-1986, (Lect. Notes Math. vol. 1277 pp. 46-77), , BerlinHeidelberg1987SpringerNew York Zbl0634.35017MR922334
  19. [Le] Léandre, R.: Développement asymptotique de la densité d'une diffusion dégénérée, Forum Math.4, pp. 45-75 (1992) Zbl0749.60054MR1142473
  20. [N-S-W] Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I Basic properties. Acta Math.155, pp. 103-147 (1985) Zbl0578.32044MR793239
  21. [Sa] Sánchez-Calle, A.: Fundamental solutions and geometry of the sum of square of vector fields, Invent. math.78, pp. 143-160 (1984) Zbl0582.58004MR762360
  22. [Sz] Sznitman, A.S.: Some bounds and limiting results for the measure of the Wiener sausage of small radius associated with elliptic diffusions, Stoch. Proc. Appl.25, pp. 1-25 (1987). Zbl0628.60080MR904262

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.