On the topology of compactoid convergence in non-Archimedean spaces

A.K. Katsaras; A. Beloyiannis

Annales mathématiques Blaise Pascal (1996)

  • Volume: 3, Issue: 2, page 135-153
  • ISSN: 1259-1734

How to cite

top

Katsaras, A.K., and Beloyiannis, A.. "On the topology of compactoid convergence in non-Archimedean spaces." Annales mathématiques Blaise Pascal 3.2 (1996): 135-153. <http://eudml.org/doc/79159>.

@article{Katsaras1996,
author = {Katsaras, A.K., Beloyiannis, A.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {compactoid set; -product; polar space; nuclear operator},
language = {eng},
number = {2},
pages = {135-153},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {On the topology of compactoid convergence in non-Archimedean spaces},
url = {http://eudml.org/doc/79159},
volume = {3},
year = {1996},
}

TY - JOUR
AU - Katsaras, A.K.
AU - Beloyiannis, A.
TI - On the topology of compactoid convergence in non-Archimedean spaces
JO - Annales mathématiques Blaise Pascal
PY - 1996
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 3
IS - 2
SP - 135
EP - 153
LA - eng
KW - compactoid set; -product; polar space; nuclear operator
UR - http://eudml.org/doc/79159
ER -

References

top
  1. [1] N. De Grande-De Kimpe, The bidual of a non-Archimedean locally convex space, Proc. Kon. Ned. Akad. Wet., A92 (2) (1989) 203-312. Zbl0693.46071MR1005052
  2. [2] N. De Grande-De Kimpeand J. Martinez-Maurica, Compact like operators between non-Archimedean normed spaces, Proc. Kon. Ned. Akad. Wet., A85 (1982), 423-429. Zbl0708.47036
  3. [3] J. Horvath, Topological Vector Spaces and Distributions, Addison-Wesley, Reading, Massachusets. Palo Alto-London. Don mills. Ontario, 1966. Zbl0143.15101MR205028
  4. [4] A.K. Katsaras, Spaces of non-Archimedean valued functions, Bolletino U.M.I (6) 5-B (1986), 603-621. Zbl0611.46074MR860645
  5. [5] A.K. Katsaras, The non-Archimedean Grothendieck's completeness Theorem, Bull. Inst. of Math. Acad. Sinica, vol. 19, no 1 (1991), 351-354. Zbl0780.46043MR1157888
  6. [6] A.K. Katsaras and A. Beloyiannis, Non-Archimedean weighted spaces of continuous functions, Rendiconti di Matematica, Ser. VII. vol. 16, Roma(1996) (to appear). Zbl0911.46049MR1451076
  7. [7] A.K. Katsaras and A. Beloyiannis, On non-Archimedean weighted spaces of continuous functions, Proc. Fourth Conf. on p-adic Analysis (Nijmegen, The Netherlands), Marcel Dekker (to appear). Zbl0947.46057MR1459213
  8. [8] A.K. Katsaras, C. Petalas and T. Vidalis, Non-Archimedean sequential spaces and the finest locally convex topology with the same compactoid sets, Acta Math. Univ. Comenianae, vol. LXIII, 1 (1994), 55-75. Zbl0826.46073MR1342595
  9. [9] C. Pérez-Garcia, "The Hahn-Banach extension Theorem in p-adic Analysis ", in: p-adic Functional Analysis, Marcel Dekker, New York. Bassel. Hong Kong (1992), 127-140. Zbl0776.46036MR1152574
  10. [10] W.H. Schikhof, Locally convex spaces over nonspherically complete valued fields I, IIBull. Soc. Math. Belg. Sr. B38( (1986). 187-224. Zbl0615.46071MR871313
  11. [11] W.H. Schikhof, The continuous linear image of a p-adic compactoid Proc. Kon. Ned. Akad. Wet. A92 (1989), 119-123. Zbl0696.46053MR993683
  12. [12] W.H. Schikhof, "The p-adic Krein-Šmulian Theorem ", in: p-adic Functional Analysis, Marcel Dekker, New York. Basel. Hong Kong (1992), 177-189. Zbl0781.46053MR1152578
  13. [13] W.H. Schikhof, A perfect duality between p-adic Banach spaces and compactoids, Indag. Math. N.S., 6(3) (1995), 325-339. Zbl0837.46062MR1351151

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.