A note on boundedness properties of Wright's generalized hypergeometric functions

R.K. Raina; T.S. Nahar

Annales mathématiques Blaise Pascal (1997)

  • Volume: 4, Issue: 2, page 83-95
  • ISSN: 1259-1734

How to cite

top

Raina, R.K., and Nahar, T.S.. "A note on boundedness properties of Wright's generalized hypergeometric functions." Annales mathématiques Blaise Pascal 4.2 (1997): 83-95. <http://eudml.org/doc/79192>.

@article{Raina1997,
author = {Raina, R.K., Nahar, T.S.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Bessel-Maitland function; Wright's generalized hypergeometric function; Mittag-Leffler functions},
language = {eng},
number = {2},
pages = {83-95},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {A note on boundedness properties of Wright's generalized hypergeometric functions},
url = {http://eudml.org/doc/79192},
volume = {4},
year = {1997},
}

TY - JOUR
AU - Raina, R.K.
AU - Nahar, T.S.
TI - A note on boundedness properties of Wright's generalized hypergeometric functions
JO - Annales mathématiques Blaise Pascal
PY - 1997
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 4
IS - 2
SP - 83
EP - 95
LA - eng
KW - Bessel-Maitland function; Wright's generalized hypergeometric function; Mittag-Leffler functions
UR - http://eudml.org/doc/79192
ER -

References

top
  1. [1] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc.135 (1969), 429-446. Zbl0172.09703MR232920
  2. [2] S.D. Bernardi, The radius of univalance of certain analytic functions, Proc. Amer. Math Soc.24(1970), 312-318. Zbl0191.08803MR251202
  3. [3] M. Jhaangiri and E.M. Silvia, Some inequalities involving generalized hypergeometric functions, "Univalant Functions, Fractional and Their Applications". (H.M. Srivastava and S. Owa), Halsted Prss (Ellis Horwood, Limited, Chichester), Wiley, New York/ Chichester/ Brisbane/ Toronto/1989. Zbl0695.30006MR1199140
  4. [4] I.B. Jung, Y.C. Kim, and H.M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl.176(1993), 138-147. Zbl0774.30008MR1222160
  5. [5] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc.104(1962), 523-537. Zbl0106.04805MR140674
  6. [6] H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood, Limited, Chichester), 1984. Zbl0535.33001MR750112
  7. [7] H.M. Srivastava and S. Owa, Some applications of the generalized hypergemetric function involving certain subclasses of analytic functions, Publ. Math. Debrecen34(1987), 299-306. Zbl0611.33006MR934909
  8. [8] J. Stankiewiez and J. Waniurski, Some classes of functions subordinate to linear transformation and their applications, Ann. Univ. Mariae Curie - Sklodowska Sect. A27 (1974), 85-93. Zbl0441.30031MR447548

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.