The measure-theoretical approach to p -adic probability theory

Andrei Khrennikov; Shinichi Yamada; Arnoud van Rooij

Annales mathématiques Blaise Pascal (1999)

  • Volume: 6, Issue: 1, page 21-32
  • ISSN: 1259-1734

How to cite

top

Khrennikov, Andrei, Yamada, Shinichi, and van Rooij, Arnoud. "The measure-theoretical approach to $p$-adic probability theory." Annales mathématiques Blaise Pascal 6.1 (1999): 21-32. <http://eudml.org/doc/79205>.

@article{Khrennikov1999,
author = {Khrennikov, Andrei, Yamada, Shinichi, van Rooij, Arnoud},
journal = {Annales mathématiques Blaise Pascal},
keywords = {-adic probability formalism; -adic numbers; non-Archimedean measures; formula of the change of variables; conditional expectations for -adic valued random variables},
language = {eng},
number = {1},
pages = {21-32},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {The measure-theoretical approach to $p$-adic probability theory},
url = {http://eudml.org/doc/79205},
volume = {6},
year = {1999},
}

TY - JOUR
AU - Khrennikov, Andrei
AU - Yamada, Shinichi
AU - van Rooij, Arnoud
TI - The measure-theoretical approach to $p$-adic probability theory
JO - Annales mathématiques Blaise Pascal
PY - 1999
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 6
IS - 1
SP - 21
EP - 32
LA - eng
KW - -adic probability formalism; -adic numbers; non-Archimedean measures; formula of the change of variables; conditional expectations for -adic valued random variables
UR - http://eudml.org/doc/79205
ER -

References

top
  1. 1. Albeverio, S., Khrennikov, A.Yu. - Representation of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions. J. of Phys. A, 29, 5515-5527 (1996). Zbl0903.46073MR1419037
  2. 2. Albeverio, S., Khrennikov, A. Yu . - p-adic Hilbert space representation of quantum systems with an infinite number of degrees of freedom. Int. J. of Modern Phys., 10, No.13/14, 1665-1673 (1996). Zbl1229.81283MR1405192
  3. 3. Albeverio, S., Karwowski, W., A random walk on p-adics - the generator and its spectrum. Stochastic Process Appl., 53, 1 - 22 (1994). Zbl0810.60065MR1290704
  4. 4. Albeverio, S., Cianci, R., De Grande - De Kimpe, N., Khrennikov., A., p-adic theory of probability and foundations of quantum mechanics. Accepted for the publication in Russian J. of Math. Phys. Zbl1059.81503
  5. 5. Cramer, H. - Mathematical theory of statistics. Univ. Press, Princeton (1949). 
  6. 6. Frampton, P. H.and Okada, Y. - p-adic string N-point function. Phys. Rev. Lett. B , 60, 484-486 (1988). MR925747
  7. 7. Frechet, M. - Recherches théoriques modernes sur la théorie des probabilités, Univ. Press., Paris (1937-1938). Zbl0015.26003JFM64.0536.01
  8. 8. Khrennikov, A.Yu. - p-adic valued distributions in mathematical physics. Kluwer Academic Publishers, Dordrecht (1994). Zbl0833.46061MR1325924
  9. 9. Khrennikov, A.Yu. - p-adic probability interpretation of Bell's inequality paradoxes. Physics Letters A, 200, 119-223 (1995). Zbl0910.60001MR1328131
  10. 10. Khrennikov, A.Yu. - p-adic probability distribution of hidden variables. Physica A, 215, 577-587 (1995). 
  11. 11. Khrennikov, A.Yu. - p-adic theory of probability and its applications. A principle of the statistical stabilization of frequencies. Teor. and Matem. Fiz., 97, No. 3, 348-363 (1993). Zbl0839.60005MR1257875
  12. 12. Khrennikov, A.Yu. - Mathematical methods of the non-Archimedean physics. Uspekhi Mat. Nauk, 45, No. 4, 79-110 (1990). Zbl0722.46040MR1075387
  13. 13. Khrennikov, A.Yu. - Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models. Kluwer Academic Publishers, Dordrecht (1997). Zbl0920.11087MR1746953
  14. 14. Kolmogorov, A.N. - Foundations of the Probability Theory. Chelsea Publ. Comp., New York (1956). Zbl0074.12202MR79843
  15. 15. Mises, R.von , - The mathematical theory of probability and statistics. Academic, London(1964). Zbl0132.12303
  16. 16. Mises, R.von - Probability, Statistics and Truth. Macmillan, London (1957). MR90158
  17. 17. Monna, A. and Springer, T. - Integration non-Archimedienne, 1,2. Indag. Math., 25, 634-653(1963). Zbl0147.11803MR156936
  18. 18. Schikhov, W. - Ultrametric calculus. Cambridge Univ. Press, Cambridge (1984) Zbl0553.26006
  19. 19. Van Rooij, A. - Non-archimedean functional analysis. Marcel Dekker, Inc., New York (1978). Zbl0396.46061MR512894
  20. 20. Volovich, I.V. - p-adic string. Class. Quant. Grav.4, 83-87 (1987). MR895889
  21. 21. Vladimirov, V.S.and Volovich, I.V. - p-adic quantum mechanics. Commun. Math. Phys., 123, 659-676 (1989). Zbl0688.22004MR1006299
  22. 22. Vladimirov, V.S., Volovich, I.V., and Zelenov, E.I. - p-adic analysis and Mathematical Physics. World Scientific Publ., Singapure (1994). Zbl0812.46076MR1288093

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.