Properties of quasi-invariant measures on topological groups and associated algebras
Annales mathématiques Blaise Pascal (1999)
- Volume: 6, Issue: 1, page 33-45
- ISSN: 1259-1734
Access Full Article
topHow to cite
topLudkovsky, S.V.. "Properties of quasi-invariant measures on topological groups and associated algebras." Annales mathématiques Blaise Pascal 6.1 (1999): 33-45. <http://eudml.org/doc/79206>.
@article{Ludkovsky1999,
author = {Ludkovsky, S.V.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {left-quasi-invariant measure; weakly continuous representation},
language = {eng},
number = {1},
pages = {33-45},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Properties of quasi-invariant measures on topological groups and associated algebras},
url = {http://eudml.org/doc/79206},
volume = {6},
year = {1999},
}
TY - JOUR
AU - Ludkovsky, S.V.
TI - Properties of quasi-invariant measures on topological groups and associated algebras
JO - Annales mathématiques Blaise Pascal
PY - 1999
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 6
IS - 1
SP - 33
EP - 45
LA - eng
KW - left-quasi-invariant measure; weakly continuous representation
UR - http://eudml.org/doc/79206
ER -
References
top- [1] N. Bourbaki. Lie groups and algebras (Moscow: Mir, 1976). MR573069
- [2] Yu.L. Dalecky, S.V. Fomin. Measures and differential equations in infinite-dimensional space (Kluwer:Dordrecht, The Netherlands, 1991). Zbl0753.46027
- [3] Yu.L. Daletskii, Ya.I. Shnaiderman . Diffusion and quasi-invariant measures on infinite-dimensional Lie groups. Funct. Anal. and its Applications. 3 (1969), 156-158.
- [4] R. Engelking. General topology (Moscow: Mir,1986). MR862623
- [5] H. Federer. Geometric measure theory(Berlin:Springer-Verlag, 1969). Zbl0176.00801MR257325
- [6] J.M.G. Fell, R.S. Doran. Representations of *-algebras. locally compact groups, and Banach *-algebraic bundles (Acad. Pr.:Boston, 1988). Zbl0652.46050
- [7] E. Hewitt and K.A. Ross. Abstract harmenic analysis. Second edition (Berlin: Springer-Verlag, 1979). MR551496
- [8] A.V. Kosyak. Irreducible Gaussian representations of the group of the interval and circle diffeomorphisms. J. Funct. Anal.125(1994), 493-547. Zbl0829.22032MR1297679
- [9] H.-H. Kuo. Gaussian measures in Banach spaces (Springer, Berlin, 1975). Zbl0306.28010MR461643
- [10] S.V. Ludkovsky. Measures on groups of diffeomorphisms of non-Archimedean Banach manifolds, Usp. Mat. Nauk.51(1996), 169-170 (N° 2). Zbl0897.46063MR1401552
- [11] S.V. Ludkovsky. Measurability of repesentations of locally compact groups. Math. Sb.1861995, 83-92 (N°2). Zbl0848.22010MR1330591
- [12] S.V. Ludkovsky. Measures on groups of diffeomorphisms of non-Archimedean manifolds, representations of groups and their applications. Theoret. i Mathem. Phys., 1999.
- [13] S.V. Ludkovsky. Quasi-invariant measures on non-Archimedean semigroups of loops. Usp. Mat. Nauk, 53 (1998), 203-204 (N° 3). Zbl0918.43001MR1657620
- [14] S.V. Ludkovsky. Quasi-invariant measures on a group of diffeomorphisms of an infinite-dimensional real manifold and induced irreducible unitary representations. Rendiconti dell'Istituto di Matematica dell'Università di Trieste. Nuova Serie. 26 pages, is accepted for publication, 1999. Zbl0965.22001
- [15] S.V. Ludkovsky. Quasi-invariant measures on loop groups of Riemann manifolds. Dokl. Ross. Acad. Nauk, to appear. Zbl1167.58301
- [16] S.V. Ludkovsky. Gaussian quasi-invariant measures on loop groups and semigroups of real manifolds and their representations. IHES, Bures, France, preprint IHES/M/97/95. Zbl1167.58301
- [17] S.V. Ludkovsky. Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations. IHES/M/98/36. Zbl0972.43001
- [18] S.V. Ludkovsky. Quasi-invariant measures on groups of diffeomorphisms of Schwarz class of smoothness for real manifolds. IHES/M/97/96.
- [19] S.V. Ludkovsky. Quasi-invariant and pseudo-differentiable measures on a non-Archimedean Banach space. Intern. Centre for Theoret. Phys. Trieste, Italy. Preprint (http://www.ictp.trieste.it) IC/96/210, October 1996.
- [20] S.V. Ludkovsky. Quasi-invariant measures on a non-Archimedean group of diffeomorphisms and on a Banach manifold. ICTP. IC/96/215, October, 1996.
- [21] S.V. Ludkovsky. Quasi-invariant measures on groups of diffeomorphisms of real Banach manifolds. ICTP. IC/96/218, October, 1996.
- [22] M.A. Naimark. Normed rings (Moscow: Nauka, 1968). MR355602
- [23] Yu.A. Neretin. Representations of the Virasoro algebra and affine algebras. in: Itogi Nauki i Tech. Ser. Sovr. Probl. Math. Fund. Napravl(Moscow: Nauka) 22(1988), 163-230. Zbl0656.17011MR942948
- [24] E.T. Shavgulidze. About one measure quasi-invariant relative to an action of a diffeomorphisms group of a finite-dimensional manifold. Dokl. Akad. Nauk SSSR.303(1988), 811-814. Zbl0704.58010MR984644
- [25] A.V. Skorohod. Integration in the Hilbert space (Moscow: Nauka, 1975).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.