Properties of quasi-invariant measures on topological groups and associated algebras

S.V. Ludkovsky

Annales mathématiques Blaise Pascal (1999)

  • Volume: 6, Issue: 1, page 33-45
  • ISSN: 1259-1734

How to cite

top

Ludkovsky, S.V.. "Properties of quasi-invariant measures on topological groups and associated algebras." Annales mathématiques Blaise Pascal 6.1 (1999): 33-45. <http://eudml.org/doc/79206>.

@article{Ludkovsky1999,
author = {Ludkovsky, S.V.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {left-quasi-invariant measure; weakly continuous representation},
language = {eng},
number = {1},
pages = {33-45},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Properties of quasi-invariant measures on topological groups and associated algebras},
url = {http://eudml.org/doc/79206},
volume = {6},
year = {1999},
}

TY - JOUR
AU - Ludkovsky, S.V.
TI - Properties of quasi-invariant measures on topological groups and associated algebras
JO - Annales mathématiques Blaise Pascal
PY - 1999
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 6
IS - 1
SP - 33
EP - 45
LA - eng
KW - left-quasi-invariant measure; weakly continuous representation
UR - http://eudml.org/doc/79206
ER -

References

top
  1. [1] N. Bourbaki. Lie groups and algebras (Moscow: Mir, 1976). MR573069
  2. [2] Yu.L. Dalecky, S.V. Fomin. Measures and differential equations in infinite-dimensional space (Kluwer:Dordrecht, The Netherlands, 1991). Zbl0753.46027
  3. [3] Yu.L. Daletskii, Ya.I. Shnaiderman . Diffusion and quasi-invariant measures on infinite-dimensional Lie groups. Funct. Anal. and its Applications. 3 (1969), 156-158. 
  4. [4] R. Engelking. General topology (Moscow: Mir,1986). MR862623
  5. [5] H. Federer. Geometric measure theory(Berlin:Springer-Verlag, 1969). Zbl0176.00801MR257325
  6. [6] J.M.G. Fell, R.S. Doran. Representations of *-algebras. locally compact groups, and Banach *-algebraic bundles (Acad. Pr.:Boston, 1988). Zbl0652.46050
  7. [7] E. Hewitt and K.A. Ross. Abstract harmenic analysis. Second edition (Berlin: Springer-Verlag, 1979). MR551496
  8. [8] A.V. Kosyak. Irreducible Gaussian representations of the group of the interval and circle diffeomorphisms. J. Funct. Anal.125(1994), 493-547. Zbl0829.22032MR1297679
  9. [9] H.-H. Kuo. Gaussian measures in Banach spaces (Springer, Berlin, 1975). Zbl0306.28010MR461643
  10. [10] S.V. Ludkovsky. Measures on groups of diffeomorphisms of non-Archimedean Banach manifolds, Usp. Mat. Nauk.51(1996), 169-170 (N° 2). Zbl0897.46063MR1401552
  11. [11] S.V. Ludkovsky. Measurability of repesentations of locally compact groups. Math. Sb.1861995, 83-92 (N°2). Zbl0848.22010MR1330591
  12. [12] S.V. Ludkovsky. Measures on groups of diffeomorphisms of non-Archimedean manifolds, representations of groups and their applications. Theoret. i Mathem. Phys., 1999. 
  13. [13] S.V. Ludkovsky. Quasi-invariant measures on non-Archimedean semigroups of loops. Usp. Mat. Nauk, 53 (1998), 203-204 (N° 3). Zbl0918.43001MR1657620
  14. [14] S.V. Ludkovsky. Quasi-invariant measures on a group of diffeomorphisms of an infinite-dimensional real manifold and induced irreducible unitary representations. Rendiconti dell'Istituto di Matematica dell'Università di Trieste. Nuova Serie. 26 pages, is accepted for publication, 1999. Zbl0965.22001
  15. [15] S.V. Ludkovsky. Quasi-invariant measures on loop groups of Riemann manifolds. Dokl. Ross. Acad. Nauk, to appear. Zbl1167.58301
  16. [16] S.V. Ludkovsky. Gaussian quasi-invariant measures on loop groups and semigroups of real manifolds and their representations. IHES, Bures, France, preprint IHES/M/97/95. Zbl1167.58301
  17. [17] S.V. Ludkovsky. Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations. IHES/M/98/36. Zbl0972.43001
  18. [18] S.V. Ludkovsky. Quasi-invariant measures on groups of diffeomorphisms of Schwarz class of smoothness for real manifolds. IHES/M/97/96. 
  19. [19] S.V. Ludkovsky. Quasi-invariant and pseudo-differentiable measures on a non-Archimedean Banach space. Intern. Centre for Theoret. Phys. Trieste, Italy. Preprint (http://www.ictp.trieste.it) IC/96/210, October 1996. 
  20. [20] S.V. Ludkovsky. Quasi-invariant measures on a non-Archimedean group of diffeomorphisms and on a Banach manifold. ICTP. IC/96/215, October, 1996. 
  21. [21] S.V. Ludkovsky. Quasi-invariant measures on groups of diffeomorphisms of real Banach manifolds. ICTP. IC/96/218, October, 1996. 
  22. [22] M.A. Naimark. Normed rings (Moscow: Nauka, 1968). MR355602
  23. [23] Yu.A. Neretin. Representations of the Virasoro algebra and affine algebras. in: Itogi Nauki i Tech. Ser. Sovr. Probl. Math. Fund. Napravl(Moscow: Nauka) 22(1988), 163-230. Zbl0656.17011MR942948
  24. [24] E.T. Shavgulidze. About one measure quasi-invariant relative to an action of a diffeomorphisms group of a finite-dimensional manifold. Dokl. Akad. Nauk SSSR.303(1988), 811-814. Zbl0704.58010MR984644
  25. [25] A.V. Skorohod. Integration in the Hilbert space (Moscow: Nauka, 1975). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.