Cycles of monomial and perturbated monomial p -adic dynamical systems

Marcus Nilsson

Annales mathématiques Blaise Pascal (2000)

  • Volume: 7, Issue: 1, page 37-63
  • ISSN: 1259-1734

How to cite

top

Nilsson, Marcus. "Cycles of monomial and perturbated monomial $p$-adic dynamical systems." Annales mathématiques Blaise Pascal 7.1 (2000): 37-63. <http://eudml.org/doc/79216>.

@article{Nilsson2000,
author = {Nilsson, Marcus},
journal = {Annales mathématiques Blaise Pascal},
keywords = {cycles and periodic points; -adic monomials},
language = {eng},
number = {1},
pages = {37-63},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Cycles of monomial and perturbated monomial $p$-adic dynamical systems},
url = {http://eudml.org/doc/79216},
volume = {7},
year = {2000},
}

TY - JOUR
AU - Nilsson, Marcus
TI - Cycles of monomial and perturbated monomial $p$-adic dynamical systems
JO - Annales mathématiques Blaise Pascal
PY - 2000
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 7
IS - 1
SP - 37
EP - 63
LA - eng
KW - cycles and periodic points; -adic monomials
UR - http://eudml.org/doc/79216
ER -

References

top
  1. [1] Apostol T.M., Introduction to analytic number theory. Springer, 1976. Zbl0335.10001MR434929
  2. [2] Escassut A.., Analytic elements in p-adic analysis. World Scientific, Singapore, 1995. Zbl0933.30030MR1370442
  3. [3] Gouvêa F.Q., p-adic Numbers. Springer, 1997. Zbl0874.11002MR1488696
  4. [4] Hadamard J., Sur la distribution des zros de la fonction ζ(s) et ses consquences arithmtiques. Bull. Soc. Math. France, 24:199-220. 1896. JFM27.0154.01
  5. [5] Hall M., Combinatorial Theory. Blaisdell, 1967. Zbl0196.02401MR224481
  6. [6] Khennikov A.., Human memory as a p-adic dynamical system. Reports from MASDA 9818, Växjö University, 1998. 
  7. [7] Khrennikov A., Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Kluwer, 1997. Zbl0920.11087
  8. [8] Khrennikov A.., p-adic Valued Distributions in Mathematical Physics. Kluwer, 1994. Zbl0833.46061
  9. [9] Lindahl K.O.., On Markovian properties of the dynamics on attractors of random dynamical systems over the p-adic numbers. Reports from Växjö University, 8: 1999. 
  10. [10] Nyqvist R.., Dynamical systems in Finite Field Extensions of p-adic numbers. Reports from Växjö University, 12: 1999. Zbl0990.37031
  11. [11] Schikhof W.H.., An introducton to p-adic analysis. Cambrige, 1984. Zbl0553.26006
  12. [12] Tambour Torbjörn, Introduction to finite groups and their representation. Lund, 1994. 
  13. [13] Valle Poussin Ch. de la, Recherches analytiques sur la thorie des nombers premiers. Ann. Soc. Sci. Bruxelles, 20: 183-256, 281-297. 1896. JFM27.0155.03
  14. [14] Le Veque W.J., Topics in Number Theory. Reading Mass. Addison-Wesley Publishing co.1956. Zbl0070.03804MR80682

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.