Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations. I

Sergey V. Ludkovsky

Annales mathématiques Blaise Pascal (2000)

  • Volume: 7, Issue: 2, page 19-53
  • ISSN: 1259-1734

How to cite

top

Ludkovsky, Sergey V.. "Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations. I." Annales mathématiques Blaise Pascal 7.2 (2000): 19-53. <http://eudml.org/doc/79221>.

@article{Ludkovsky2000,
author = {Ludkovsky, Sergey V.},
journal = {Annales mathématiques Blaise Pascal},
keywords = {quasi-invariant measure; analytic manifold; semigroup of loops; semigroup of paths; pseudo-differentiable function; Hausdorff monoid},
language = {eng},
number = {2},
pages = {19-53},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations. I},
url = {http://eudml.org/doc/79221},
volume = {7},
year = {2000},
}

TY - JOUR
AU - Ludkovsky, Sergey V.
TI - Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations. I
JO - Annales mathématiques Blaise Pascal
PY - 2000
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 7
IS - 2
SP - 19
EP - 53
LA - eng
KW - quasi-invariant measure; analytic manifold; semigroup of loops; semigroup of paths; pseudo-differentiable function; Hausdorff monoid
UR - http://eudml.org/doc/79221
ER -

References

top
  1. [1] Y. Amice. "Interpolation p-adique". Bull. Soc. Math. France92 (1964), 117-180. Zbl0158.30201MR188199
  2. [2] Aref'eva I.Ya., Dragovich B., Frampton P.H., Volovich I.V. "Wave functions of the universe and p-adic gravity". Int. J. Modern Phys.6 (1991), 4341-4358. Zbl0733.53039MR1126611
  3. [3] J. Araujo, W.H. Schikhof. "The Weierstrass-Stone approximation theorem for p-adic Cn-functions". Ann. Math. Blaise Pascal.1 (1994), 61-74. Zbl0821.26019MR1275217
  4. [4] N. Bourbaki. "Intégration". Livre VI. Fasc. XIII, XXI, XXIX, XXXV. Ch. 1-9 (Paris: Hermann; 1965, 1967, 1963, 1969). 
  5. [5] J.L. Brylinski. "Loop spaces, characteristic classes and geometric quantisation." Progr. in Math. V. 107 (Boston: Birkhaüser, 1993). Zbl0823.55002MR1197353
  6. [6] B. Diarra. "Ultraproduits ultrametriques de corps values". Ann. Sci. Univ. Clermont II, Sér. Math., Fasc.22 (1984), 1-37. Zbl0566.12020
  7. [7] H.I. Eliasson. "Geometry of manifolds of maps". J.Difer. Geom.1 (1967), 169-194. Zbl0163.43901MR226681
  8. [8] R. Engelking. "General topology". Second Edit., Sigma Ser. in Pure Math. V. 6 (Berlin: Heldermann Verlag, 1989). Zbl0684.54001MR1039321
  9. [9] J.M.G. Fell, R.S. Doran. "Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles". V. 1 and V. 2 (Boston.: Acad. Press, 1988). Zbl0652.46050
  10. [10] E. Hewitt, K.A. Ross. "Abstract harmonic analysis" (Berlin: Springer, 1979). Zbl0416.43001MR551496
  11. [11] K. Kunen. "Set theory" (Amsterdam: Nort-Holland Pub.Com.,1980). Zbl0443.03021MR597342
  12. [12] S.V. Ludkovsky. "Measures on groups of diffeomorphisms of non-Archimedean Banach manifolds". Russ. Math. Surv.51 (1996), 338-340. Zbl0897.46063MR1401552
  13. [13] S.V. Ludkovsky. "Irreducible unitary representations of non-Archimedean groups of diffeomorphisms". Southeast Asian Math. Bull.22 (1998), 419-436. Zbl0933.43003MR1811185
  14. [14] S.V. Ludkovsky. "Quasi-invariant and pseudo-differentiable measures on a non-Archimedean Banach space". Int. Cent. Theor. Phys., Trieste, Italy, Preprint N° IC/96/210, 1996. Zbl1079.46050
  15. [15] S.V. Ludkovsky. "Quasi-invariant measures on non-Archimedean loop semigroups". Russ. Math. Surv.53 (1998), 633-634. Zbl0918.43001
  16. [16] S.V. Ludkovsky. "Measures on diffeomorphism groups of non-Archimederan manifolds: group representations and their applications". Theor. and Mathem. Phys.119 (1999), 381-396. Zbl0952.58008MR1721464
  17. [17] S.V. Ludkovsky. "Gaussian quasi-invariant measures on loop groups and semigroups of real manifolds and their representations". Inst. des Hautes Études Scient., Bures-sur-Yvette, France, Preprint, IHES, Janvier, 1998, 32 pages (shortly in: Dokl. Akad. Nauk (Russian). 370 (2000), 306-308 (N° 3)). 
  18. [18] S.V. Ludkovsky. "Embeddings of non-Archimedean Banach manifolds into non-Archimedean Banach spaces". Russ. Math. Surv.53 (1998), 1097-1098. Zbl0932.46070
  19. [19] M.B. Mensky. "The path group. Measurements. Fields. Particles" (Moscow: Nauka, 1983). MR753098
  20. [20] L. Narici, E. Beckenstein. "Topological vector spaces" (New York: Marcel Dekker Inc., 1985). Zbl0569.46001MR812056
  21. [21] A.C.M. van Rooij. "Non-Archimedean functional analysis" (New York: Marcel Dekker Inc., 1978). Zbl0396.46061MR512894
  22. [22] W.H. Schikhof. "Ultrametric calculus" (Cambridge: Camb. Univ. Pr., 1984). Zbl0553.26006MR791759
  23. [23] W.H. Schikhof. "On p-adic compact operators". Report 8911 (Dep. Math. Cath. Univ., Nijmegen, The Netherlands, 1989). Zbl0712.46045MR1254006
  24. [24] W.H. Schikhof. "A Radon-Nikodym theorem for non-Archimedean integrals and absolutely continuous measures on groups". Indag. Math.33 (1971), 78-85. Zbl0216.41202MR301156
  25. [25] R.M. Switzer. "Algebraic topology - homotopy and homology" (Berlin: Springer, 1975). Zbl0305.55001MR385836
  26. [26] V.S. Vladimirov. "Generalised functions over the field of p-adic numbers". Russ. Math. Surv.43 (1989), 19-64 (N° 5). Zbl0678.46053MR971464
  27. [27] V.S. Vladimirov, I.V. Volovich, E.I. Zelenov. "p-Adic analysis and mathematical physics" (Moscow: Fiz.-Mat. Lit, 1994). Zbl0864.46048
  28. [28] A. Weil. "Basic number theory" (Berlin: Springer, 1973). Zbl0267.12001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.