Admissibilité de l'observation pour des systèmes bilinéaires contrôlés par des opérateurs non bornés

Abdelali Idrissi

Annales mathématiques Blaise Pascal (2001)

  • Volume: 8, Issue: 1, page 73-92
  • ISSN: 1259-1734

How to cite

top

Idrissi, Abdelali. "Admissibilité de l'observation pour des systèmes bilinéaires contrôlés par des opérateurs non bornés." Annales mathématiques Blaise Pascal 8.1 (2001): 73-92. <http://eudml.org/doc/79228>.

@article{Idrissi2001,
author = {Idrissi, Abdelali},
journal = {Annales mathématiques Blaise Pascal},
keywords = {bilinear systems; admissibility; non-bounded operators; well posedness; controls; observation operators},
language = {fre},
number = {1},
pages = {73-92},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Admissibilité de l'observation pour des systèmes bilinéaires contrôlés par des opérateurs non bornés},
url = {http://eudml.org/doc/79228},
volume = {8},
year = {2001},
}

TY - JOUR
AU - Idrissi, Abdelali
TI - Admissibilité de l'observation pour des systèmes bilinéaires contrôlés par des opérateurs non bornés
JO - Annales mathématiques Blaise Pascal
PY - 2001
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 8
IS - 1
SP - 73
EP - 92
LA - fre
KW - bilinear systems; admissibility; non-bounded operators; well posedness; controls; observation operators
UR - http://eudml.org/doc/79228
ER -

References

top
  1. [1] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, 1995. Zbl0819.35001MR1345385
  2. [2] B. Amir, M.Y. ElBoukfaoui, A. Idrissi and L. Maniar, Admissibility of controle operators for bilinear systems. Semesterbericht Funktionalanalysis, Sommersemester, Tübingen (1998), . 
  3. [3] A. Benbrik, Contrôle optimal des systèmes à paramètres répartis bilinéaires, Doctorat, Perpignan 1987. 
  4. [4] H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North Holland1973. Zbl0252.47055MR348562
  5. [5] P.L. Butzer and H. Berens, Semigroups of Operators and Approximation, Springer-Verlag1967. Zbl0164.43702MR230022
  6. [6] R.F. Curtain, H. Logemann, S. Townley and H. Zwart, Well-posedness, stabilizability and admissibility for Pritchard Salamon systems, J. Math. Systems, Estimation and control7 (1997), 439 - 476. Zbl0815.93046MR1472401
  7. [7] R.F. Curtain and A.J. Pritchard, Infinite Dimensional Linear System Theory, Lecture Notes in Control and Information Sciences8Springer-Verlag, 1978. Zbl0389.93001MR516812
  8. [8] -----, An abstract theory for unbounded control action for distributed parameter systems, SIAM J. Control and Opt.15 (1977), 566 - 611. Zbl0359.93021MR476057
  9. [9] R.F. Curtain and G. Weiss, Well posedness of triples of operators (in the sense of linear systems theory), International Series of Numerical Mathematics91Birkhäuser-Verlag, (1989), 41 - 58. Zbl0686.93049MR1033051
  10. [10] G. Da Pratoand P. Grisvard, Maximal regularity for evolution equations by interpolation and extrapolation, J. Funct. Anal.58, (1984), 107 - 124. Zbl0593.47041MR757990
  11. [11] W. Desch and W. Schappacher, Some generation results for perturbed semigroups, Semigroup Theory and Applications (Proceedings Trieste 1987) (P. Clément, S. Invernizzi, E. Mitidieri and I.I. Vrabie), Lec. notes in pure and Appl.116Marcel Dekker, 1989, 125 - 152. Zbl0701.47021MR1009392
  12. [12] N. ElAlami, Analyse et commande optimale des systèmes bilinéaires distribués, application aux procédés energétiques, Doctorat d'Etat-I.M.P. Perpignan 1986. 
  13. [13] K.J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Springer-Verlag, 1999. Zbl0952.47036MR1721989
  14. [14] H.O. Fattorini, Boundary control systems, SIAM J. Control6 (1968) , 349 - 385. Zbl0164.10902MR239249
  15. [15] D. Hinrichsen and A.J. Pritchard, Robust stability of linear evolution operators on Banach spaces, SIAM J. Cont. Optim.32 (1994), 1503 - 1541. Zbl0817.93055MR1297095
  16. [16] A. Idrissi and A. Rhandi, Admissibility of time-varying observation for non-autonomous systems, Semesterbericht Funktionalanalysis, Sommersemester, Tübingen, (1999). Zbl1123.93302
  17. [17] B. Jacobe, V. Dragan and A.J. Pritchard, Infinite dimensional time-varying systems with nonlinear output feedback, Integr. Equat. Oper Th.22 (1995), 440 - 462. Zbl0839.93057MR1343339
  18. [18] B.V. Keulen, H∞-Control for Distributed Parameter Systems: a State-Space Approach, Birkhäuser, 1993. Zbl0788.93018MR1269323
  19. [19] J.L. Lions, Optimal Control of Systems Gouverned by Partial Differential Equations, Springer-Verlag, New York, 1971. Zbl0203.09001
  20. [20] L. Maniar and A. Rhandi, Extrapolation and inhomogeneous retarded differential equations in infinite dimensional Banach spaces, Rend. Circ. Mat. Palermo47 (1998), 331 - 346. Zbl0916.34065MR1633503
  21. [21] R. Nagel, Sobolev spaces and semigroups, Semesterberichte Funktionalanalysis, Sommersemester, Tübingen, (1983). 
  22. [22] R. Nagel, G. Nickel and S. Romanelli, Identification of extrapolation spaces for unbounded operators, Tübinger Berichte Zur Funktionalanalysis (1995), Tübingen. Zbl0863.47024MR1390474
  23. [23] R. Nagel and E. Sinestrari, Inhomogeneous Volterra integrodifferential equations for Hille-Yosida operators, , Marcel Dekker, Lecture Notes Pure Appl. Math.150 (1994), 51 - 70. Zbl0790.45011MR1241671
  24. [24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983. Zbl0516.47023MR710486
  25. [25] A.J. Pritchard and D. Salamon, The linear quadratic control problem for retarded systems with delays in control and observation, IMA J. of Math. Control and Information2 (1985), 335 - 362. Zbl0646.34078MR872455
  26. [26] D.L. Russell, On boundary value controllability of linear symmetric hyperbolic systems, Mathematical Theory of Control, Academic Press, New York, (1967), 312 - 321. Zbl0214.39607MR258500
  27. [27] -----, Quadratic performance criteria in boundary control of linear symmetric hyperbolic systems, SIAM J. Control Optim.Il (1973), 475 - 509. Zbl0237.49009MR328728
  28. [28] J.M.A.M. van Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture Notes Math.1529Springer-Verlag, 1992. Zbl0780.47026MR1222650
  29. [29] D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: a functional analytic approach, Trans. Amer. Math. Soc.300 (1987), 383 - 431. Zbl0623.93040MR876460
  30. [30] G. Weiss, Admissible observation operators for linear semigroups, Israel J. Math.65 (1989), 17 - 43. Zbl0696.47040MR994732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.