Théorème de Van Kampen pour les champs algébriques

Vincent Zoonekynd

Annales mathématiques Blaise Pascal (2002)

  • Volume: 9, Issue: 1, page 101-145
  • ISSN: 1259-1734

How to cite

top

Zoonekynd, Vincent. "Théorème de Van Kampen pour les champs algébriques." Annales mathématiques Blaise Pascal 9.1 (2002): 101-145. <http://eudml.org/doc/79240>.

@article{Zoonekynd2002,
author = {Zoonekynd, Vincent},
journal = {Annales mathématiques Blaise Pascal},
keywords = {algebraic stack; fundamental group; theorem of Seifert and van Kampen},
language = {fre},
number = {1},
pages = {101-145},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Théorème de Van Kampen pour les champs algébriques},
url = {http://eudml.org/doc/79240},
volume = {9},
year = {2002},
}

TY - JOUR
AU - Zoonekynd, Vincent
TI - Théorème de Van Kampen pour les champs algébriques
JO - Annales mathématiques Blaise Pascal
PY - 2002
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 9
IS - 1
SP - 101
EP - 145
LA - fre
KW - algebraic stack; fundamental group; theorem of Seifert and van Kampen
UR - http://eudml.org/doc/79240
ER -

References

top
  1. [1] R. Brown. Topology : a geometric account of general topology, homotopy types and the fundamental groupoid. Chichester, 1988. Zbl0655.55001MR984598
  2. [2] P. Deligne and D. Mumford. The irreducibility of the space of curves of given genus. Publ. Math. IHES, 36 :75-109, 1969. Zbl0181.48803MR262240
  3. [3] E. Friedlander. Étale homotopy of simplicial schemes, volume 104 of Annals of Math. Studies.Princeton University Press, 1982. Zbl0538.55001MR676809
  4. [4] J. Giraud. Théorie de la descente. Mémoires de la société mathématique de France, 2, 1964. Zbl0211.32902MR190142
  5. [5] A. Grothendieck. Revêtements étales et groupe fondamental, volume 224 of LNM. Springer Verlag, 1971. Zbl0234.14002MR354651
  6. [6] A. Grothendieck and J.-L. Verdier. Théorie des topos et cohomologie étale des schémas, volume 269-271 of LNM. Springer Verlag, 1972. MR354653
  7. [7] A. Haefliger. Groupes d'holonomie et classifiants. Astérisque, 116 :70-107, 1984. Zbl0562.57012MR755163
  8. [8] G. Laumon and L. Moret-Bailly. Champs algébriques, volume 39 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer Verlag, 2000. Zbl0945.14005MR1771927
  9. [9] O. Leroy. Groupoïde fondamental et théorème de Van Kampen dans les topos. Cahiers mathématiques de l'université de Montpelier, 1979. Zbl0511.18002MR587312
  10. [10] I. Moerdijk. Prodiscrete groups and galois toposes. Proc. Kon. Ned. Ac. Wet. series A, 92 :219-235, 1089. Zbl0687.18004MR1005054
  11. [11] I. Moerdijk and D.A. Pronk. Orbifolds, sheaves and groupoids. K-theory, 12 :3-21, 1997. Zbl0883.22005MR1466622
  12. [12] T. Oda. Étale homotopy type of the moduli space of algebraic curves. In L. Schneps and P. Lochak, editors, Geometric Galois Actions, volume 242 of London Mathematical Society, Lecture Notes Series, pages 85-95. Cambridge University Press, 1997. Zbl0902.14019MR1483111
  13. [13] D.A. Pronk. Groupoid representations for sheaves on orbifolds. Ph.D. thesis, Universiteit Utrecht, 1995. 
  14. [14] W.P. Thurston. The geometry and topology of 3-manifolds. Princeton, 1978. http://msri.org/publications/books/gt3m/. 
  15. [15] A. Vistoli. Intersection theory on algebraic stacks and on their moduli spaces. Invent. math., 97 :613-670, 1989. Zbl0694.14001MR1005008
  16. [16] V. Zoonekynd. The fundamental group of an algebraic stack. math.AG/ 0111071. 
  17. [17] V. Zoonekynd. La tour de Teichmüller-Grothendieck. thèse de doctorat, disponible en http://www.institut.math.jussieu.fr/theses/2001/ zoonekynd/, 2001. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.