A spectral construction of a treed domain that is not going-down
David E. Dobbs; Marco Fontana; Gabriel Picavet
Annales mathématiques Blaise Pascal (2002)
- Volume: 9, Issue: 1, page 1-7
- ISSN: 1259-1734
Access Full Article
topHow to cite
topDobbs, David E., Fontana, Marco, and Picavet, Gabriel. "A spectral construction of a treed domain that is not going-down." Annales mathématiques Blaise Pascal 9.1 (2002): 1-7. <http://eudml.org/doc/79241>.
@article{Dobbs2002,
author = {Dobbs, David E., Fontana, Marco, Picavet, Gabriel},
journal = {Annales mathématiques Blaise Pascal},
language = {eng},
number = {1},
pages = {1-7},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {A spectral construction of a treed domain that is not going-down},
url = {http://eudml.org/doc/79241},
volume = {9},
year = {2002},
}
TY - JOUR
AU - Dobbs, David E.
AU - Fontana, Marco
AU - Picavet, Gabriel
TI - A spectral construction of a treed domain that is not going-down
JO - Annales mathématiques Blaise Pascal
PY - 2002
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 9
IS - 1
SP - 1
EP - 7
LA - eng
UR - http://eudml.org/doc/79241
ER -
References
top- [1] N. Bourbaki. Topologie Générale, Chapitres 1-4. Hermann, Paris, 1971. Zbl0249.54001MR358652
- [2] D.E. Dobbs. On going-down for simple overrings, II. Comm. Algebra, 1:439-458, 1974. Zbl0285.13001MR364225
- [3] D.E. Dobbs. Posets admitting a unique order-compatible topology. Discrete Math., 41:235-240, 1982. Zbl0498.06004MR676885
- [4] D.E. Dobbs. On treed overrings and going-down domains. Rend. Mat., 7:317-322, 1987. Zbl0683.13003MR986002
- [5] D.E. Dobbs and M. Fontana. Universally going-down homomorphisms of commutative rings. J. Algebra, 90:410-429, 1984. Zbl0544.13004MR760019
- [6] D.E. Dobbs, M. Fontana, and I.J. Papick. On certain distinguished spectral sets. Ann. Mat. Pura Appl., 128:227-240, 1980. Zbl0472.54021MR640784
- [7] D.E. Dobbs and I.J. Papick. On going-down for simple overrings, III. Proc. Amer. Math. Soc., 54:35-38, 1976. Zbl0285.13002MR417153
- [8] D.E. Dobbs and I.J. Papick. Going down: a survey. Nieuw Arch. v. Wisk., 26:255-291, 1978. Zbl0383.13005MR491656
- [9] M. Fontana. Topologically defined classes of commutative rings. Ann. Mat. Pura Appl., 123:331-355, 1980. Zbl0443.13001MR581935
- [10] R. Gilmer. Multiplicative Ideal Theory. Dekker, New York, 1972. Zbl0248.13001MR427289
- [11] M. Hochster. Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 142:43-60, 1969. Zbl0184.29401MR251026
- [12] W.J. Lewis. The spectrum of a ring as a partially ordered set. J. Algebra, 25:419-434, 1973. Zbl0266.13010MR314811
- [13] M. Nagata. Local rings. Wiley/Interscience, New York, 1962. Zbl0123.03402MR155856
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.