A spectral construction of a treed domain that is not going-down

David E. Dobbs; Marco Fontana; Gabriel Picavet

Annales mathématiques Blaise Pascal (2002)

  • Volume: 9, Issue: 1, page 1-7
  • ISSN: 1259-1734

How to cite

top

Dobbs, David E., Fontana, Marco, and Picavet, Gabriel. "A spectral construction of a treed domain that is not going-down." Annales mathématiques Blaise Pascal 9.1 (2002): 1-7. <http://eudml.org/doc/79241>.

@article{Dobbs2002,
author = {Dobbs, David E., Fontana, Marco, Picavet, Gabriel},
journal = {Annales mathématiques Blaise Pascal},
language = {eng},
number = {1},
pages = {1-7},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {A spectral construction of a treed domain that is not going-down},
url = {http://eudml.org/doc/79241},
volume = {9},
year = {2002},
}

TY - JOUR
AU - Dobbs, David E.
AU - Fontana, Marco
AU - Picavet, Gabriel
TI - A spectral construction of a treed domain that is not going-down
JO - Annales mathématiques Blaise Pascal
PY - 2002
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 9
IS - 1
SP - 1
EP - 7
LA - eng
UR - http://eudml.org/doc/79241
ER -

References

top
  1. [1] N. Bourbaki. Topologie Générale, Chapitres 1-4. Hermann, Paris, 1971. Zbl0249.54001MR358652
  2. [2] D.E. Dobbs. On going-down for simple overrings, II. Comm. Algebra, 1:439-458, 1974. Zbl0285.13001MR364225
  3. [3] D.E. Dobbs. Posets admitting a unique order-compatible topology. Discrete Math., 41:235-240, 1982. Zbl0498.06004MR676885
  4. [4] D.E. Dobbs. On treed overrings and going-down domains. Rend. Mat., 7:317-322, 1987. Zbl0683.13003MR986002
  5. [5] D.E. Dobbs and M. Fontana. Universally going-down homomorphisms of commutative rings. J. Algebra, 90:410-429, 1984. Zbl0544.13004MR760019
  6. [6] D.E. Dobbs, M. Fontana, and I.J. Papick. On certain distinguished spectral sets. Ann. Mat. Pura Appl., 128:227-240, 1980. Zbl0472.54021MR640784
  7. [7] D.E. Dobbs and I.J. Papick. On going-down for simple overrings, III. Proc. Amer. Math. Soc., 54:35-38, 1976. Zbl0285.13002MR417153
  8. [8] D.E. Dobbs and I.J. Papick. Going down: a survey. Nieuw Arch. v. Wisk., 26:255-291, 1978. Zbl0383.13005MR491656
  9. [9] M. Fontana. Topologically defined classes of commutative rings. Ann. Mat. Pura Appl., 123:331-355, 1980. Zbl0443.13001MR581935
  10. [10] R. Gilmer. Multiplicative Ideal Theory. Dekker, New York, 1972. Zbl0248.13001MR427289
  11. [11] M. Hochster. Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 142:43-60, 1969. Zbl0184.29401MR251026
  12. [12] W.J. Lewis. The spectrum of a ring as a partially ordered set. J. Algebra, 25:419-434, 1973. Zbl0266.13010MR314811
  13. [13] M. Nagata. Local rings. Wiley/Interscience, New York, 1962. Zbl0123.03402MR155856

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.