Modèles stratifiés en mécanique des fluides géophysiques

Thierry Colin

Annales mathématiques Blaise Pascal (2002)

  • Volume: 9, Issue: 2, page 229-243
  • ISSN: 1259-1734

How to cite

top

Colin, Thierry. "Modèles stratifiés en mécanique des fluides géophysiques." Annales mathématiques Blaise Pascal 9.2 (2002): 229-243. <http://eudml.org/doc/79251>.

@article{Colin2002,
author = {Colin, Thierry},
journal = {Annales mathématiques Blaise Pascal},
language = {fre},
number = {2},
pages = {229-243},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Modèles stratifiés en mécanique des fluides géophysiques},
url = {http://eudml.org/doc/79251},
volume = {9},
year = {2002},
}

TY - JOUR
AU - Colin, Thierry
TI - Modèles stratifiés en mécanique des fluides géophysiques
JO - Annales mathématiques Blaise Pascal
PY - 2002
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 9
IS - 2
SP - 229
EP - 243
LA - fre
UR - http://eudml.org/doc/79251
ER -

References

top
  1. [1] A. Babin, A. Mahalov, et B. Nicolaenko. Regularity and integrability of 3d euler and navier-stokes equations for rotating fluids. Asymptot. Anal., 15, no. 2: 103-150, 1997. Zbl0890.35109MR1480996
  2. [2] V. Barcilon, P. Constantin, et E.S. Titi. Existence of solutions to the stommel-charney model of the gulf stream. SIAM J. Math. Anal., 19, (6): , 1988. Zbl0679.76108MR965256
  3. [3] A.J. Bourgeois et J.T. Beale. Validity of the quasigeostrophic model for large scale flow in the atmosphere and ocean. Jour. Math. Anal., 25, (4): 1023-1068, 1994. Zbl0811.35097MR1278890
  4. [4] D. Bresch et T. Colin. Some remarks on the derivation of the sverdrup relation. J. Math. Fluid Mech., 4 (2): 95-108, 2002. Zbl1002.35098MR1908437
  5. [5] D. Bresch, F. Guillén-Gonzalez, et M.A. Rodriguez-Bellido. A corrector for the sverdrup solution for a domain with islands, to appear in. Applicable Anal., 2002. Zbl1096.35112MR2033236
  6. [6] D. Bresch, J. Lemoine, et J. Simon. Nonstationary models for shallow lakes. Asymptot. Anal., 22 (1): 15-38, 2000. Zbl0953.35116MR1739516
  7. [7] J.-Y. Chemin. A propos d'un problème de pénalisation de type antisymétrique. J. Math. Pures Appl, 9 (76): 739-755, 1997. Zbl0896.35103MR1485418
  8. [8] T. Colin. Remarks on a homogeneous model of ocean circulation. Asymptotic Anal., 12 (2): 153-168, 1996. Zbl0845.76095MR1386229
  9. [9] T. Colin. The cauchy problem and the continuous limit for the multilayer model in geophysical fluid dynamics. SIAM J. Math. Anal., 28 (3): 516-529, 1997. Zbl0879.76115MR1443606
  10. [10] T. Colin et P. Fabrie. Rotating fluid at high rossby number driven by a surface stress: existence and convergence. Adv. Differential Equations, 2 (5): 715-751, 1997. Zbl1023.76593MR1751425
  11. [11] B. Desjardins et E. Grenier. On the homogeneous model of wind-driven ocean circulation. SIAM J. Appl. Math., 60: 43-60, 2000. Zbl0958.76092MR1740834
  12. [12] I. Gallagher. The tridimensional navier-stokes equations with almost bidimensional data: stability, uniqueness, and life span. Internat. Math. Res. Notices, 18: 919-935, 1997. Zbl0893.35098MR1481611
  13. [13] E. Grenier et N. Masmoudi. Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations, 22, (5-6): 953-975, 1997. Zbl0880.35093MR1452174
  14. [14] J.-L. Lions, R. Temam, et S. Wang. Models of the coupled atmosphere and ocean (cao i). Computational Mechanics Advances, 1: 5-54, 1993. Zbl0805.76011MR1252502
  15. [15] J.-L. Lions, R. Temam, et S. Wang. Numerical analysis of the coupled atmosphere-ocean models (cao ii). Computational Mechanics Advances, 1: 55-119, 1993. Zbl0805.76052MR1252502
  16. [16] J.-L. Lions, R. Temam, et S. Wang. Geostrophic asymptotics of the primitive equations of the atmosphere. Topol. Methods Nonlinear Anal., 4, (2): 253-287, 1994. Zbl0846.35106MR1350974
  17. [17] J.-L. Lions, R. Temam, et S. Wang. Mathematical theory for the coupled atmosphere-ocean models (cao iii). J. Math. Pures Appl., 9 (74): 105-163, 1995. Zbl0866.76025MR1325825
  18. [18] J.K. Pedlosky. Geophysical fluid dynamics. Springer Verlag, second edition, 1987. Zbl0713.76005
  19. [19] B. Tan et R. Grimshaw. Solitary waves in a two-layer quasigeostrophic model with wind stress forcing. Geophys. Astrophys. Fluid Dynam, 91, (3-4): 169-197, 1999. MR1755614
  20. [20] R. Temam et M. Ziane. Navier-stokes equations in three-dimensional thin domains with various boundary conditions. Adv. Differential Equations, 1, (4) : 499-546, 1996. Zbl0864.35083MR1401403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.