Modèles stratifiés en mécanique des fluides géophysiques
Annales mathématiques Blaise Pascal (2002)
- Volume: 9, Issue: 2, page 229-243
- ISSN: 1259-1734
Access Full Article
topHow to cite
topReferences
top- [1] A. Babin, A. Mahalov, et B. Nicolaenko. Regularity and integrability of 3d euler and navier-stokes equations for rotating fluids. Asymptot. Anal., 15, no. 2: 103-150, 1997. Zbl0890.35109MR1480996
- [2] V. Barcilon, P. Constantin, et E.S. Titi. Existence of solutions to the stommel-charney model of the gulf stream. SIAM J. Math. Anal., 19, (6): , 1988. Zbl0679.76108MR965256
- [3] A.J. Bourgeois et J.T. Beale. Validity of the quasigeostrophic model for large scale flow in the atmosphere and ocean. Jour. Math. Anal., 25, (4): 1023-1068, 1994. Zbl0811.35097MR1278890
- [4] D. Bresch et T. Colin. Some remarks on the derivation of the sverdrup relation. J. Math. Fluid Mech., 4 (2): 95-108, 2002. Zbl1002.35098MR1908437
- [5] D. Bresch, F. Guillén-Gonzalez, et M.A. Rodriguez-Bellido. A corrector for the sverdrup solution for a domain with islands, to appear in. Applicable Anal., 2002. Zbl1096.35112MR2033236
- [6] D. Bresch, J. Lemoine, et J. Simon. Nonstationary models for shallow lakes. Asymptot. Anal., 22 (1): 15-38, 2000. Zbl0953.35116MR1739516
- [7] J.-Y. Chemin. A propos d'un problème de pénalisation de type antisymétrique. J. Math. Pures Appl, 9 (76): 739-755, 1997. Zbl0896.35103MR1485418
- [8] T. Colin. Remarks on a homogeneous model of ocean circulation. Asymptotic Anal., 12 (2): 153-168, 1996. Zbl0845.76095MR1386229
- [9] T. Colin. The cauchy problem and the continuous limit for the multilayer model in geophysical fluid dynamics. SIAM J. Math. Anal., 28 (3): 516-529, 1997. Zbl0879.76115MR1443606
- [10] T. Colin et P. Fabrie. Rotating fluid at high rossby number driven by a surface stress: existence and convergence. Adv. Differential Equations, 2 (5): 715-751, 1997. Zbl1023.76593MR1751425
- [11] B. Desjardins et E. Grenier. On the homogeneous model of wind-driven ocean circulation. SIAM J. Appl. Math., 60: 43-60, 2000. Zbl0958.76092MR1740834
- [12] I. Gallagher. The tridimensional navier-stokes equations with almost bidimensional data: stability, uniqueness, and life span. Internat. Math. Res. Notices, 18: 919-935, 1997. Zbl0893.35098MR1481611
- [13] E. Grenier et N. Masmoudi. Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations, 22, (5-6): 953-975, 1997. Zbl0880.35093MR1452174
- [14] J.-L. Lions, R. Temam, et S. Wang. Models of the coupled atmosphere and ocean (cao i). Computational Mechanics Advances, 1: 5-54, 1993. Zbl0805.76011MR1252502
- [15] J.-L. Lions, R. Temam, et S. Wang. Numerical analysis of the coupled atmosphere-ocean models (cao ii). Computational Mechanics Advances, 1: 55-119, 1993. Zbl0805.76052MR1252502
- [16] J.-L. Lions, R. Temam, et S. Wang. Geostrophic asymptotics of the primitive equations of the atmosphere. Topol. Methods Nonlinear Anal., 4, (2): 253-287, 1994. Zbl0846.35106MR1350974
- [17] J.-L. Lions, R. Temam, et S. Wang. Mathematical theory for the coupled atmosphere-ocean models (cao iii). J. Math. Pures Appl., 9 (74): 105-163, 1995. Zbl0866.76025MR1325825
- [18] J.K. Pedlosky. Geophysical fluid dynamics. Springer Verlag, second edition, 1987. Zbl0713.76005
- [19] B. Tan et R. Grimshaw. Solitary waves in a two-layer quasigeostrophic model with wind stress forcing. Geophys. Astrophys. Fluid Dynam, 91, (3-4): 169-197, 1999. MR1755614
- [20] R. Temam et M. Ziane. Navier-stokes equations in three-dimensional thin domains with various boundary conditions. Adv. Differential Equations, 1, (4) : 499-546, 1996. Zbl0864.35083MR1401403