Modélisation numérique pour l'océanographie physique
Annales mathématiques Blaise Pascal (2002)
- Volume: 9, Issue: 2, page 345-361
- ISSN: 1259-1734
Access Full Article
topHow to cite
topTréguier, Anne-Marie. "Modélisation numérique pour l'océanographie physique." Annales mathématiques Blaise Pascal 9.2 (2002): 345-361. <http://eudml.org/doc/79258>.
@article{Tréguier2002,
author = {Tréguier, Anne-Marie},
journal = {Annales mathématiques Blaise Pascal},
language = {fre},
number = {2},
pages = {345-361},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Modélisation numérique pour l'océanographie physique},
url = {http://eudml.org/doc/79258},
volume = {9},
year = {2002},
}
TY - JOUR
AU - Tréguier, Anne-Marie
TI - Modélisation numérique pour l'océanographie physique
JO - Annales mathématiques Blaise Pascal
PY - 2002
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 9
IS - 2
SP - 345
EP - 361
LA - fre
UR - http://eudml.org/doc/79258
ER -
References
top- [1] G.K. Batchelor. Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids., 12, II:233-238, 1969. Zbl0217.25801
- [2] R. Bleck. An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates. Ocean Modelling, 4:55-88, 2002.
- [3] R. Bleck et D.B. Boudra. Initial testing of a numerical ocean circulation model using a hybrid (quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr., 11:755-770, 1981.
- [4] A.F. Blumberg et G.L. Mellor. A description of a three-dimensional coastal ocean circulation model. In Norman S. Heaps, Three-dimensional Coastal ocean models, pages 1-16. American Geophysical Union, 1987.
- [5] K. Bryan. A numerical method for the study of the world ocean. J. Comput. Phys., 4:347-376, 1969. Zbl0195.55504
- [6] X. Carton, R. Baraille, et N. Filatoff. Modèles intermédiaires de circulation océanique. Annales Blaise Pascal, x:x-y, 2002. Zbl1125.86305MR1969079
- [7] E. Chassignet et J. VerronOcean Modeling and Parameterization, volume 516 of NATO Science series C. Kluwer Academic Publishers, Cambridge, 1990. Zbl0923.00026MR1660641
- [8] D.G. Dristchel. Contour dynamics and contour surgery: numerical algorithms for extended, high resolution modeling of vortex dynamics in two-dimensional, inviscid, incompressible flow. Comp. Phys. Rep., 10:77, 1989.
- [9] P.R. Gent et J.C. McWilliams. Isopycnal mixing in ocean circulation model. J. Phys. Oceanogr., 20:150-155, 1990.
- [10] P.R. Gent, J. Willebrand, T.J. McDougall, et J.C. McWilliams. Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25:463-474, 1995.
- [11] A.E. Gill et K. Bryan. Effects of geometry on the circulation of a three-dimensional southern hemisphere ocean model. Deep Sea Res., 18:685-721, 1971.
- [12] A. Griffa. Applications of stochastic particle models to oceanographic problems. In P. MullerR. Adler et B. Rozovskii, Stochastic Modelling in Physical Oceanography, page 467. Birkhauser, Boston, 1996. Zbl0864.76074MR1383872
- [13] S.M. Griffies, C. Boening, F.O. Bryan, E.P. Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A.M. Treguier, et D. Webb. Developments in ocean climate modelling. Ocean Modelling, 2:123-192, 2000.
- [14] D.B. Haidvogel et A. Beckmann. Numerical Ocean Circulation Modelling, volume 2 of Series on environmental science and management. Imperial College Press, London, 1999. Zbl0932.76001
- [15] R.H. Kraichnan. Statistical dynamics of two-dimensional flow. J. Fluid. Mech., 67:155-175, 1967. Zbl0297.76042
- [16] W.G. Large, J.C. McWilliams, et S.C. Doney. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32:363-403, 1994.
- [17] B. Legras et D.G. Dritschel. A comparison of the contour surgery and psuedospectral method. J. Comp. Phys., 104 (2):287, 1993. Zbl0784.76070MR1205688
- [18] P. Lynch. Richardson's marvellous forecast. In M A Shapiro et S Grønås, The Life Cycles of Extratropical Cyclones, page 355pp. Amer. Met. Soc., Boston, 1999.
- [19] M.E. McIntyre et W.A. Norton. Potential vorticity inversion on a hemisphere. J. Atmos. Sci., 57(9):1214-1235, 2000. MR1763965
- [20] J.C. McWilliams. The vortices of geostrophic turbulence. J.Fluid. Mech, 219:387-404, 1990.
- [21] S. Orszag. Numerical simulation of incompressible flows within simple boundaries: accuracy. J. Fluid. Mech., 49:75-112, 1971. Zbl0229.76029MR315915
- [22] O.M. Phillips. Turbulence in a strongly stratified fluid - is it unstable?Deep Sea Res., 19:79-81, 1972.
- [23] M.H. Redi. Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12:1154-1158, 1982.
- [24] P.B. Rhines. Waves and turbulence on a β—plane. J. Fluid. Mech., 69:417-443, 1975. Zbl0366.76043
- [25] L.F. Richardson. Weather Prediction by numerical Process, volume 516. Cambridge Univ., Press, reprinted in 1965 by Dover publications, New York, 1922. Zbl48.0629.07JFM48.0629.07
- [26] B.R. Ruddick, T.J. McDougall, et J.S. Turner. The formation of layers in a uniformly stirred density gradient. Deep Sea Res., 36:597-609, 1989.
- [27] A.M. Treguier. Evaluating eddy mixing coefficients from eddy-resolving ocean models: a case study. J. Mar. Res., 57:89-108, 1999.
- [28] G.K. Vallis et B.L. Hua. Eddy viscosity and the anticipated potential vorticity method. J. Atmos. Sci., 45:617-627, 1988.
- [29] R.C. Wajsowicz. A consistent formulation of the anisotropic stress tensor for use in models of the large scale ocean circulation. J. Comp. Phys., 105:333-338, 1993. Zbl0767.76013MR1210413
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.