Multiplicité et norme d'un idéal fractionnaire et régulier

Martine Picavet-L'hermitte

Annales scientifiques de l'Université de Clermont. Mathématiques (1989)

  • Volume: 94, Issue: 25, page 1-46
  • ISSN: 0249-7042

How to cite

top

Picavet-L'hermitte, Martine. "Multiplicité et norme d'un idéal fractionnaire et régulier." Annales scientifiques de l'Université de Clermont. Mathématiques 94.25 (1989): 1-46. <http://eudml.org/doc/80569>.

@article{Picavet1989,
author = {Picavet-L'hermitte, Martine},
journal = {Annales scientifiques de l'Université de Clermont. Mathématiques},
keywords = {Cohen Macaulay rings; Dedekind domain; fractional ideals; multiplicity},
language = {fre},
number = {25},
pages = {1-46},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Multiplicité et norme d'un idéal fractionnaire et régulier},
url = {http://eudml.org/doc/80569},
volume = {94},
year = {1989},
}

TY - JOUR
AU - Picavet-L'hermitte, Martine
TI - Multiplicité et norme d'un idéal fractionnaire et régulier
JO - Annales scientifiques de l'Université de Clermont. Mathématiques
PY - 1989
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 94
IS - 25
SP - 1
EP - 46
LA - fre
KW - Cohen Macaulay rings; Dedekind domain; fractional ideals; multiplicity
UR - http://eudml.org/doc/80569
ER -

References

top
  1. [1] H. Bass, Torsion free and projective modules, Trans. Amer. Math. Soc., 102, (1962), 319-327. Zbl0103.02304MR140542
  2. [2] H. Bass, On the ubiquity of Gorenstein rings, Math. Z., 82, (1963), 8-28. Zbl0112.26604MR153708
  3. [3] Z.I. Borevitch, I.R. Chafarevitch, Théorie des nombres, Gauthier-villars, Paris, (1967) . Zbl0145.04901MR205908
  4. [4] I.S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J ., 17, (1950), 27-42. Zbl0041.36408MR33276
  5. [5] E.C. Dade, O. Taussky and H. Zassenhauss, On the theory of orders, in particular on the semi-group of idéal classes and genera of an order in an algebraic number field, Math. Ann., 148, (1962), 31-64. Zbl0113.26504MR140544
  6. [6] D.E. Estes, R.M. Guralnick, Module équivalences: local to global, when primitive polynomials represent units, J. Algebra, 77, (1982), 138-157. Zbl0492.13005MR665169
  7. [7] A. Fröhlich, J.W. Cassels, Algebraic Number Theory, Academic Press, London, New-York, (1967) Zbl0153.07403MR215665
  8. [8] A. Fröhlich, Invariants for modules over commutative separable orders, Quart. J. Math. Oxford, 16, (1965), 193-232. Zbl0192.14002MR210697
  9. [9] R. Gilmer, W. Heinzer, On the number of generators of an invertible ideal, J. Algebra, 14, (1970), 139-151. Zbl0186.35201MR252377
  10. [10] J. Lipman, Stable ideals and Arf rings, Amer. J. Math., 93 (1971), 649-685 Zbl0228.13008MR282969
  11. [11] T.G. Lucas, Two annihilator conditions: Property (A) and (R.C.), Comm. Algebra, 14, (1986), 557-580 Zbl0586.13004MR823354
  12. [12] E. Matlis, 1-dimensional Cohen-Macaulay rings, Lecture Notes in Mathematics, N° 327, Springer-Verlag, Berlin, New-York, (1973) Zbl0264.13012MR357391
  13. [13] D.G. Northcott, Lessons on rings, module and multiplicities, Cambridge University Press, (1968) . Zbl0159.33001MR231816
  14. [14] D.G. Northcott, Prime ideals and DedeKind orders, Proc. London Math. Soc., 10 (1960), 481-496. Zbl0204.05801MR118744
  15. [15] G. Picavet, Propriétes et applications de la notion de contenu, Comm. Alg., 13 (1985), 2231-2265. Zbl0584.13004MR801439
  16. [16] M. Picavet, Ordres de Gorenstein, J Ann. Sci. Univ. Clermont II, Ser. Math.24, (1987),1-32. Zbl0685.13009MR974413
  17. [17] J. Querre, Idéaux civisoriels d'un anneau de polynômes, J. Algebra, 64, (1980), 270-284. Zbl0441.13012MR575795
  18. [18] J.D. Sally, W.V. Vasconceles, Stable rings, J. Pure Appl. Algebra, 4, (1974),319-336. Zbl0284.13010MR409430
  19. [19] O. Zariski, P. Samuel, CommutativeAlgebra, Vol 1, D. Var Nostrand Company, Inc., Princeton, Toronto, New-York, London, (1960) . Zbl0121.27801MR120249

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.