Multiplicité et norme d'un idéal fractionnaire et régulier
Annales scientifiques de l'Université de Clermont. Mathématiques (1989)
- Volume: 94, Issue: 25, page 1-46
- ISSN: 0249-7042
Access Full Article
topHow to cite
topPicavet-L'hermitte, Martine. "Multiplicité et norme d'un idéal fractionnaire et régulier." Annales scientifiques de l'Université de Clermont. Mathématiques 94.25 (1989): 1-46. <http://eudml.org/doc/80569>.
@article{Picavet1989,
author = {Picavet-L'hermitte, Martine},
journal = {Annales scientifiques de l'Université de Clermont. Mathématiques},
keywords = {Cohen Macaulay rings; Dedekind domain; fractional ideals; multiplicity},
language = {fre},
number = {25},
pages = {1-46},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Multiplicité et norme d'un idéal fractionnaire et régulier},
url = {http://eudml.org/doc/80569},
volume = {94},
year = {1989},
}
TY - JOUR
AU - Picavet-L'hermitte, Martine
TI - Multiplicité et norme d'un idéal fractionnaire et régulier
JO - Annales scientifiques de l'Université de Clermont. Mathématiques
PY - 1989
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 94
IS - 25
SP - 1
EP - 46
LA - fre
KW - Cohen Macaulay rings; Dedekind domain; fractional ideals; multiplicity
UR - http://eudml.org/doc/80569
ER -
References
top- [1] H. Bass, Torsion free and projective modules, Trans. Amer. Math. Soc., 102, (1962), 319-327. Zbl0103.02304MR140542
- [2] H. Bass, On the ubiquity of Gorenstein rings, Math. Z., 82, (1963), 8-28. Zbl0112.26604MR153708
- [3] Z.I. Borevitch, I.R. Chafarevitch, Théorie des nombres, Gauthier-villars, Paris, (1967) . Zbl0145.04901MR205908
- [4] I.S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J ., 17, (1950), 27-42. Zbl0041.36408MR33276
- [5] E.C. Dade, O. Taussky and H. Zassenhauss, On the theory of orders, in particular on the semi-group of idéal classes and genera of an order in an algebraic number field, Math. Ann., 148, (1962), 31-64. Zbl0113.26504MR140544
- [6] D.E. Estes, R.M. Guralnick, Module équivalences: local to global, when primitive polynomials represent units, J. Algebra, 77, (1982), 138-157. Zbl0492.13005MR665169
- [7] A. Fröhlich, J.W. Cassels, Algebraic Number Theory, Academic Press, London, New-York, (1967) Zbl0153.07403MR215665
- [8] A. Fröhlich, Invariants for modules over commutative separable orders, Quart. J. Math. Oxford, 16, (1965), 193-232. Zbl0192.14002MR210697
- [9] R. Gilmer, W. Heinzer, On the number of generators of an invertible ideal, J. Algebra, 14, (1970), 139-151. Zbl0186.35201MR252377
- [10] J. Lipman, Stable ideals and Arf rings, Amer. J. Math., 93 (1971), 649-685 Zbl0228.13008MR282969
- [11] T.G. Lucas, Two annihilator conditions: Property (A) and (R.C.), Comm. Algebra, 14, (1986), 557-580 Zbl0586.13004MR823354
- [12] E. Matlis, 1-dimensional Cohen-Macaulay rings, Lecture Notes in Mathematics, N° 327, Springer-Verlag, Berlin, New-York, (1973) Zbl0264.13012MR357391
- [13] D.G. Northcott, Lessons on rings, module and multiplicities, Cambridge University Press, (1968) . Zbl0159.33001MR231816
- [14] D.G. Northcott, Prime ideals and DedeKind orders, Proc. London Math. Soc., 10 (1960), 481-496. Zbl0204.05801MR118744
- [15] G. Picavet, Propriétes et applications de la notion de contenu, Comm. Alg., 13 (1985), 2231-2265. Zbl0584.13004MR801439
- [16] M. Picavet, Ordres de Gorenstein, J Ann. Sci. Univ. Clermont II, Ser. Math.24, (1987),1-32. Zbl0685.13009MR974413
- [17] J. Querre, Idéaux civisoriels d'un anneau de polynômes, J. Algebra, 64, (1980), 270-284. Zbl0441.13012MR575795
- [18] J.D. Sally, W.V. Vasconceles, Stable rings, J. Pure Appl. Algebra, 4, (1974),319-336. Zbl0284.13010MR409430
- [19] O. Zariski, P. Samuel, CommutativeAlgebra, Vol 1, D. Var Nostrand Company, Inc., Princeton, Toronto, New-York, London, (1960) . Zbl0121.27801MR120249
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.