Noncommutative Jordan algebras containing minimal inner ideals
Annales scientifiques de l'Université de Clermont. Mathématiques (1991)
- Volume: 97, Issue: 27, page 153-176
- ISSN: 0249-7042
Access Full Article
topHow to cite
topFernández López, Antonio. "Noncommutative Jordan algebras containing minimal inner ideals." Annales scientifiques de l'Université de Clermont. Mathématiques 97.27 (1991): 153-176. <http://eudml.org/doc/80583>.
@article{FernándezLópez1991,
author = {Fernández López, Antonio},
journal = {Annales scientifiques de l'Université de Clermont. Mathématiques},
keywords = {finiteness conditions; modular annihilator; noncommutative Jordan algebras; minimal inner ideals; primitive noncommutative Jordan normed algebras; socle; noncommutative Jordan Banach algebras},
language = {eng},
number = {27},
pages = {153-176},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Noncommutative Jordan algebras containing minimal inner ideals},
url = {http://eudml.org/doc/80583},
volume = {97},
year = {1991},
}
TY - JOUR
AU - Fernández López, Antonio
TI - Noncommutative Jordan algebras containing minimal inner ideals
JO - Annales scientifiques de l'Université de Clermont. Mathématiques
PY - 1991
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 97
IS - 27
SP - 153
EP - 176
LA - eng
KW - finiteness conditions; modular annihilator; noncommutative Jordan algebras; minimal inner ideals; primitive noncommutative Jordan normed algebras; socle; noncommutative Jordan Banach algebras
UR - http://eudml.org/doc/80583
ER -
References
top- 1 J.C. Alexander, Compact Banach algebras. Proc. London Math. Soc. (3) 18 (1968), 1-18. Zbl0184.16502MR229040
- 2 E.M. Alfen, F.W. Shultz and E. Stormer, A Gelgand Neumark theorem for Jordan algebras. Advances in Math.28 (1978), 11-56. Zbl0397.46065MR482210
- 3 W. Ambrose, Structures theorems for a special class of Banach algebra. Trans. Amer. Math. Soc.57 (1945), 364-386. Zbl0060.26906MR13235
- 4 B.A. Barnes, Modular annihilator algebras. Canad. J. Math.18 (1966), 566-578. Zbl0156.04003MR194471
- 5 B.A. Barnes, On the existence of minimal ideals in Banach algebras. Trans. Amer. Math. Math. Soc.133 (1968), 511-517. Zbl0159.18501MR226418
- 6 B.A. Barnes, Examples of modular annihilator algebras. Rocky Mountain J. Math.1 (1971), 657-665. Zbl0233.46068MR288581
- 7 B.A. Barnes, G.J. Murphy, M.R.F. Smith and T.T. West, Riesz and Fredholm theory in Banach algebras. Research Notes in Mathematics. Pitman (1982). Zbl0534.46034
- 8 M. Benslimane and A.M. Kaidi, Structure des algèbres de Jordan Banach non commutatives complexes regulières ou semisimples à spectre fini. Submitted to J. Algebra. Zbl0692.46044
- 9 F.F. Bonsall and J. Duncan, Complete Normed Algebras. Springer Verlag (1973). Zbl0271.46039MR423029
- 10 J.A. Cuenca Mira and A. Rodriguez Palacios, Structure theory for noncommutative Jordan H*-algebras. J. Algebra (to appear). Zbl0616.46047
- 11 J. Dieudonne, Sur le socle d'un anneau et les anneaux simples infinis. Bull. Sco. Math. de France, 71 (1943), 1-30. Zbl0060.07203MR46356JFM68.0049.02
- 12 A. Fernandez Lopez, Modular annihilator Jordan algebras. Commun. in Algebra13 (12) (1985), 2597-2613. Zbl0613.17015MR811525
- 13 A. Fernandez Lopez, Ideals in nondegenerate noncommutative Jordan algebras. Commun. in Algebra, (to appear). Zbl0591.17002MR837273
- 14 A. Fernandez Lopez, Noncommutative Jordan algebras coinciding with its socle. Preprint. MR837273
- 15 A. Fernandez Lopez and A. Rodriguez Palacios, On the socle of a noncommutative Jordan algebra. Submitted to Manuscripta Mathematica. Zbl0598.17001
- 16 A. Fernandez Lopez, Noncommutative Jordan Riesz algebras. Preprint. Zbl0684.46042MR929796
- 17 A. Fernandez Lopez, Theoremas de Wedderburn-Zorn en algebras alterntivas normadas completas. Tesis Doctoral. Universidad de Granada. Granada1983.
- 18 A. Fernandez Lopez and Rodriguez Palacios, Primitive non commutative Jordan algebras with nonzero socle. Proc. Amer. Math. Soc.96 (2) (1986), 199-206. Zbl0585.17001MR818443
- 19 A. Fernandez Lopez and Rodriguez Palacios, A Wedderbum theorem for nonassociative complete normed algebras. Proc. London Math. Soc. (to appear). Zbl0603.46056
- 20 A. Fernandez Lopez and Rodriguez Palacios, Coincidence of the socle and the maximal regular ideal in associative and Jordan Banach algebras. Preprint.
- 21 L. Hogben and K. McCrimmon, Maximal modular inner ideals and the Jacobson radical of a Jordan algebra. J. Algebra68 (1981), 155-169. Zbl0449.17011MR604300
- 22 N. Jacobson, On the theory of primitive rings. Ann. of Math.48 (1947) 8-21. Zbl0029.10601MR19591
- 23 N. Jacobson, Lecture in Abstract Algebra II, Linear Algebra, New York, 1953. Zbl0053.21204
- 24 N. Jacobson, Structure of rings. Amer. Math. Sco. Colloq. Publ. 37, Providence R.I.1964. Zbl0073.02002MR222106
- 25 N. Jacobson, Structure and representations of Jordan algebras. Amer. Math. Soc. Colloq. Publ. 39, Providence R.I.1968. Zbl0218.17010MR251099
- 26 N. Jacobson and C.E. Rickart, Homomorphisms of Jordan rings of self-adjoint elements. Trans. Amer. Math. Soc.72 (1952), 310-322. Zbl0046.25603MR46346
- 27 A.M. Kaidi, Bases para una teoria de las algebras no-associativas normadas. Tesis Doctoral. Universidad de Granada. Granada1977.
- 28 K. Kaplansky, Normed algebras. Duke Math. J.16 (1949), 399-418. Zbl0033.18701MR31193
- 29 E. Kleinfeld, Primitive alternative rings and semisimplicity. Amer. J. Math.77 (4) (1955), 725-730. Zbl0066.02302MR72115
- 30 K McCrimmon, A note on quasi-associative algebras. Proc. Amer. Math. Soc.17 (1966), 1455-1459. Zbl0146.26002MR238910
- 31 K McCrimmon, On Herstein's theorem relating Jordan and associative algebras. J. Algebra13 (19690), 382-392. Zbl0224.16027MR249476
- 32 K McCrimmon, Noncommutative Jordan rings, Trans. Amer. Math. Soc.158 (1971), 1-33. Zbl0229.17002MR310024
- 33 K McCrimmon, Zelmanov's prime theorem for quadratic Jordan algebras. J. Algebra76 (1982), 297-326. Zbl0486.17008MR661857
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.