Malliavin calculus for two-parameter processes

D. Nualart; M. Sanz

Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications (1985)

  • Volume: 85, Issue: 3, page 73-86
  • ISSN: 0246-1501

How to cite

top

Nualart, D., and Sanz, M.. "Malliavin calculus for two-parameter processes." Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications 85.3 (1985): 73-86. <http://eudml.org/doc/80619>.

@article{Nualart1985,
author = {Nualart, D., Sanz, M.},
journal = {Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications},
keywords = {two-parameter Wiener sheet; Malliavin calculus},
language = {eng},
number = {3},
pages = {73-86},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Malliavin calculus for two-parameter processes},
url = {http://eudml.org/doc/80619},
volume = {85},
year = {1985},
}

TY - JOUR
AU - Nualart, D.
AU - Sanz, M.
TI - Malliavin calculus for two-parameter processes
JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications
PY - 1985
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 85
IS - 3
SP - 73
EP - 86
LA - eng
KW - two-parameter Wiener sheet; Malliavin calculus
UR - http://eudml.org/doc/80619
ER -

References

top
  1. [1]. Bismut, J.M. (1981). Martingales, the Malliavin Calculus and hypoellipticity under general Hörmander's conditions. Z. Wahrsch. verw. Gebiete, pp 469-505. Zbl0445.60049MR621660
  2. [2]. Cairoli, R. (1972). Sur une équation différentielle stochastique. CRAS274, pp 1739-1742. Zbl0244.60045MR301796
  3. [3]. Cairoli, R. and Walsh, J.B. (1975). Stochastic integrals in the plane. Acta Math.134, pp 111-183. Zbl0334.60026MR420845
  4. [4]. Hajek, B. (1982). Stochastic equations of hyperbolic type and a two-parameter Stratonovich calculus. Ann. Probability10, pp. 451-463. Zbl0478.60069MR647516
  5. [5]. Ikeda, N. and Watanabe, S. (1981). Stochastic differential equations and diffusion processes. Amsterdam-Oxford- New York: North-Holland and Tokyo: Kodansha. Zbl0495.60005MR637061
  6. [6]. Malliavin, P. (1978). Stochastic Calculus of variations and hypoelliptic operators. Proceedings of the International Conference on Stoch. differential equations of Kyoto 1976, pp. 195-263Tokyo: Kimokuniya and New York: Wiley. Zbl0411.60060MR536013
  7. [7]. Nualart, D. and Sanz, M. (1984). Malliavin Calculus for two-parameter Wiener functionals. Preprint. Zbl0595.60065MR807338
  8. [8]. Shigekawa, I. (1980). Derivatives of Wiener functionals and absolute continuity of induced measures. J. Math. Kyoto Univ.20-2 pp. 263-289. Zbl0476.28008MR582167
  9. [9]. Stroock, D. (1981). The Malliavin Calculus, a functional analytic approach. Journal of Functional Analysis44, pp.212-257. Zbl0475.60060MR642917
  10. [10]. Wong, E. and Zakai, M. (1978). Differentiation formulas for stochastic integrals in the plane. Stochastic Processes and their Applications6, pp. 339-349. Zbl0372.60078MR651571

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.