Relations between laws of large numbers and asymptotic martingales in Banach spaces
Nguyen Van Hung; Quang Luu Dinh
Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications (1989)
- Volume: 93, Issue: 8, page 105-118
- ISSN: 0246-1501
Access Full Article
topHow to cite
topNguyen Van Hung, and Dinh, Quang Luu. "Relations between laws of large numbers and asymptotic martingales in Banach spaces." Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications 93.8 (1989): 105-118. <http://eudml.org/doc/80654>.
@article{NguyenVanHung1989,
author = {Nguyen Van Hung, Dinh, Quang Luu},
journal = {Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications},
keywords = {laws of large numbers; asymptotic martingales; laws of large numbers for martingale differences},
language = {eng},
number = {8},
pages = {105-118},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Relations between laws of large numbers and asymptotic martingales in Banach spaces},
url = {http://eudml.org/doc/80654},
volume = {93},
year = {1989},
}
TY - JOUR
AU - Nguyen Van Hung
AU - Dinh, Quang Luu
TI - Relations between laws of large numbers and asymptotic martingales in Banach spaces
JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications
PY - 1989
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 93
IS - 8
SP - 105
EP - 118
LA - eng
KW - laws of large numbers; asymptotic martingales; laws of large numbers for martingale differences
UR - http://eudml.org/doc/80654
ER -
References
top- [1] A. de Acosta, Inequalities for B-valued random vectors with applications to the strong law of large numbers, Ann. Probability9(1981), p.157-161. Zbl0449.60002MR606806
- [2] P. Assouad, Espaces p-lisses et q-convexes. Inegalites de Burkholder, Seminaire Maurcy-Schwartz (1975), exp XV. Zbl0318.46023MR407963
- [3] T.A. Azlarov and N.A. Volodin, The law of large numbers for identically distributed Banach space valued random variables, Teorya Veroyatnostcy i Pim, 26 (1981), p.584-590. Zbl0466.60007MR627864
- [4] J. Elton, A law of large numbers for identically distributed martingale differences, Ann. Probability9(1981), p.405-412. Zbl0463.60039MR614626
- [5] A. Gut and K.D. Schmidt, Amarts and set function processesLecture Notes in Math. 1042, Springer-Verlag1983. Zbl0525.60055MR727477
- [6] Krengel U. and L. Sucheston, On semiamarts, amarts and processes with finite value, Advances in Prob.4 (1978), p. 197-266. MR515432
- [7] Dinh Quang Luu, On the class of all processes having a Riesz decomposition, Acta Math. Vietnam. T.6, n.1, (1981), p. 101-107. Zbl0605.60053MR683327
- [8] Dinh Quang Luu, Representation theorems for multivalued (regular) L1-amarts, Math. Scand.58 (1986), p. 5-22. Zbl0626.60042MR845483
- [9] J. Neveu, Discrete parameter martingales, North-Holland Publ. Co.1975. Zbl0345.60026MR402915
- [10] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math.20 (1975), p. 226-250. Zbl0344.46030MR394135
- [11] L. Schwartz, Geometry and probability in Banach spaces, Lecture Notes in Math. 852, Springer-Verlag1981. Zbl0462.46008MR612976
- [12] J. Szulga, On the Lr-convergence, r > 0, for n-1/r Sn in Banach spaces, Bull. Acad. Polon. Sci.25 (1977), p.1011-1013. Zbl0362.60071MR482923
- [13] J.M. Talagrand, Some structure results for martingales in the limit and pramarts, Ann. Probability13 (1985), p. 1192-1203. Zbl0582.60055MR806217
- [14] R.L. Taylor, Stochastic convergence of weighted sums of random elements in linear spaces, Lecture Notes in Math. 672, Springer-Verlag1978. Zbl0443.60004MR513422
- [15] X.C. Wang and M.B. Rao, Some results on the convergence of weighted sums of random elements in Banach spaces, Studia Math., 86 (1987), p.131-153. Zbl0629.60013MR901906
- [16] W.A. Woyczynski, Asymptotic behaviour of martingales in Banach spaces, Lecture Notes in Math. 526 (1976), 273-284. Zbl0379.60045MR451394
- [17] -----, On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence, Probab. and Math. Statistics1 (1980), 117-131. Zbl0502.60006MR626306
- [18] -----, Asymptotic behaviour of martingales in Banach spaces II, Lecture Notes in Math. 939 (1982), 216-225. Zbl0495.60012MR668549
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.