Relations between laws of large numbers and asymptotic martingales in Banach spaces

Nguyen Van Hung; Quang Luu Dinh

Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications (1989)

  • Volume: 93, Issue: 8, page 105-118
  • ISSN: 0246-1501

How to cite

top

Nguyen Van Hung, and Dinh, Quang Luu. "Relations between laws of large numbers and asymptotic martingales in Banach spaces." Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications 93.8 (1989): 105-118. <http://eudml.org/doc/80654>.

@article{NguyenVanHung1989,
author = {Nguyen Van Hung, Dinh, Quang Luu},
journal = {Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications},
keywords = {laws of large numbers; asymptotic martingales; laws of large numbers for martingale differences},
language = {eng},
number = {8},
pages = {105-118},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Relations between laws of large numbers and asymptotic martingales in Banach spaces},
url = {http://eudml.org/doc/80654},
volume = {93},
year = {1989},
}

TY - JOUR
AU - Nguyen Van Hung
AU - Dinh, Quang Luu
TI - Relations between laws of large numbers and asymptotic martingales in Banach spaces
JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications
PY - 1989
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 93
IS - 8
SP - 105
EP - 118
LA - eng
KW - laws of large numbers; asymptotic martingales; laws of large numbers for martingale differences
UR - http://eudml.org/doc/80654
ER -

References

top
  1. [1] A. de Acosta, Inequalities for B-valued random vectors with applications to the strong law of large numbers, Ann. Probability9(1981), p.157-161. Zbl0449.60002MR606806
  2. [2] P. Assouad, Espaces p-lisses et q-convexes. Inegalites de Burkholder, Seminaire Maurcy-Schwartz (1975), exp XV. Zbl0318.46023MR407963
  3. [3] T.A. Azlarov and N.A. Volodin, The law of large numbers for identically distributed Banach space valued random variables, Teorya Veroyatnostcy i Pim, 26 (1981), p.584-590. Zbl0466.60007MR627864
  4. [4] J. Elton, A law of large numbers for identically distributed martingale differences, Ann. Probability9(1981), p.405-412. Zbl0463.60039MR614626
  5. [5] A. Gut and K.D. Schmidt, Amarts and set function processesLecture Notes in Math. 1042, Springer-Verlag1983. Zbl0525.60055MR727477
  6. [6] Krengel U. and L. Sucheston, On semiamarts, amarts and processes with finite value, Advances in Prob.4 (1978), p. 197-266. MR515432
  7. [7] Dinh Quang Luu, On the class of all processes having a Riesz decomposition, Acta Math. Vietnam. T.6, n.1, (1981), p. 101-107. Zbl0605.60053MR683327
  8. [8] Dinh Quang Luu, Representation theorems for multivalued (regular) L1-amarts, Math. Scand.58 (1986), p. 5-22. Zbl0626.60042MR845483
  9. [9] J. Neveu, Discrete parameter martingales, North-Holland Publ. Co.1975. Zbl0345.60026MR402915
  10. [10] G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math.20 (1975), p. 226-250. Zbl0344.46030MR394135
  11. [11] L. Schwartz, Geometry and probability in Banach spaces, Lecture Notes in Math. 852, Springer-Verlag1981. Zbl0462.46008MR612976
  12. [12] J. Szulga, On the Lr-convergence, r &gt; 0, for n-1/r Sn in Banach spaces, Bull. Acad. Polon. Sci.25 (1977), p.1011-1013. Zbl0362.60071MR482923
  13. [13] J.M. Talagrand, Some structure results for martingales in the limit and pramarts, Ann. Probability13 (1985), p. 1192-1203. Zbl0582.60055MR806217
  14. [14] R.L. Taylor, Stochastic convergence of weighted sums of random elements in linear spaces, Lecture Notes in Math. 672, Springer-Verlag1978. Zbl0443.60004MR513422
  15. [15] X.C. Wang and M.B. Rao, Some results on the convergence of weighted sums of random elements in Banach spaces, Studia Math., 86 (1987), p.131-153. Zbl0629.60013MR901906
  16. [16] W.A. Woyczynski, Asymptotic behaviour of martingales in Banach spaces, Lecture Notes in Math. 526 (1976), 273-284. Zbl0379.60045MR451394
  17. [17] -----, On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence, Probab. and Math. Statistics1 (1980), 117-131. Zbl0502.60006MR626306
  18. [18] -----, Asymptotic behaviour of martingales in Banach spaces II, Lecture Notes in Math. 939 (1982), 216-225. Zbl0495.60012MR668549

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.