Induction theorems for Grothendieck groups and Whitehead groups of finite groups
Annales scientifiques de l'École Normale Supérieure (1968)
- Volume: 1, Issue: 1, page 91-148
- ISSN: 0012-9593
Access Full Article
topHow to cite
topLam, Tsit-Yuen. "Induction theorems for Grothendieck groups and Whitehead groups of finite groups." Annales scientifiques de l'École Normale Supérieure 1.1 (1968): 91-148. <http://eudml.org/doc/81831>.
@article{Lam1968,
author = {Lam, Tsit-Yuen},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {group theory},
language = {eng},
number = {1},
pages = {91-148},
publisher = {Elsevier},
title = {Induction theorems for Grothendieck groups and Whitehead groups of finite groups},
url = {http://eudml.org/doc/81831},
volume = {1},
year = {1968},
}
TY - JOUR
AU - Lam, Tsit-Yuen
TI - Induction theorems for Grothendieck groups and Whitehead groups of finite groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1968
PB - Elsevier
VL - 1
IS - 1
SP - 91
EP - 148
LA - eng
KW - group theory
UR - http://eudml.org/doc/81831
ER -
References
top- [1] A. A. ALBERT, Fundamental concepts of higher algebra, University of Chicago Press, 1956. Zbl0073.00802
- [2] E. ARTIN and J. TATE, Class Field Theory, Harvard University Notes, 1961.
- [3] M. ATIYAH, Characters and cohomology of finite groups (Publications mathématiques, I. H. E. S., No. 9). Zbl0107.02303
- [4] H. BASS, K-theory and stable algebra (Publications mathématiques, I. H. E. S., No. 22, p. 4-59).
- [5] H. BASS, A. HELLER and R. SWAN, The Whitehead group of a polynomial extension (Publications mathématiques, I. H. E. S., No. 22, p. 61-79). Zbl0248.18026MR30 #4806
- [6] H. BASS, The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups (Topology, vol. 4, 1966, p. 391-410). Zbl0166.02401MR33 #1341
- [7] H. BASS, Topics in algebraic K-theory, Tata Institute Notes, 1966.
- [8] H. BASS and J. MILNOR, On the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2) (mimeographed notes of Institute for Advanced Studies, Princeton, 1966).
- [9] H. BASS and M. P. MURTHY, Grothendieck groups and Picard groups of abelian group rings (to appear in Annals of Math.). Zbl0157.08202
- [10] H. BASS, J. MILNOR and J.-P. SERRE, Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2), to appear in Publications mathématiques, I. H. E. S. Zbl0174.05203
- [11] H. CARTAN and S. EILENBERG, Homological algebra, Princeton University Press, 1956. Zbl0075.24305MR17,1040e
- [12] C. CURTIS and I. REINER, Representation theory of finite groups and associative algebras, J. Wiley, New York, 1962. Zbl0131.25601MR26 #2519
- [13] M. I. GIORGIUTTI, Thèse de l'Université de Paris, 1963.
- [14] M. HALL, Theory of groups, Mc Millan, New York, 1959. Zbl0084.02202MR21 #1996
- [15] A. HELLER and I. REINER, Grothendieck groups of orders in semi-simple algebras (Trans. Amer. Math. Soc., vol. 112, 1964, p. 344-355). Zbl0127.25803MR28 #5093
- [16] G. HIGMAN, The units of group rings (Proc. London Math. Soc., vol. 46, 1940, p. 231-248). Zbl0025.24302MR2,5bJFM66.0104.04
- [17] T. Y. LAM, Artin exponent of finite groups (Journal of Algebra) (to appear). Zbl0277.20006
- [18] J. MILNOR, Whitehead torsion (Bull. Amer. Math. Soc., vol. 72, No. 3, 1966, p. 358-426). Zbl0147.23104MR33 #4922
- [19] D. S. RIM, Modules over finite groups (Ann. of Math., vol. 69, 1960, p. 700-712). Zbl0092.26104MR21 #3474
- [20] J.-P. SERRE, Corps locaux, Herman, Paris, 1962. Zbl0137.02601MR27 #133
- [21] R. G. SWAN, Induced representations and projective modules (Ann. of Math., vol. 71, 1960, p. 552-578). Zbl0104.25102MR25 #2131
- [22] R. G. SWAN, The Grothendieck ring of a finite group (Topology, vol. 2, 1963, p. 85-110). Zbl0119.02905MR27 #3683
- [23] O. ZARISKI and P. SAMUEL, Commutative algebra, vol. 1, Van Nostrand, Princeton, 1958. Zbl0081.26501MR19,833e
- [24] J. STROOKER, Thesis at Rijkuniversiteit te Utrecht, 1965.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.