Induction theorems for Grothendieck groups and Whitehead groups of finite groups

Tsit-Yuen Lam

Annales scientifiques de l'École Normale Supérieure (1968)

  • Volume: 1, Issue: 1, page 91-148
  • ISSN: 0012-9593

How to cite

top

Lam, Tsit-Yuen. "Induction theorems for Grothendieck groups and Whitehead groups of finite groups." Annales scientifiques de l'École Normale Supérieure 1.1 (1968): 91-148. <http://eudml.org/doc/81831>.

@article{Lam1968,
author = {Lam, Tsit-Yuen},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {group theory},
language = {eng},
number = {1},
pages = {91-148},
publisher = {Elsevier},
title = {Induction theorems for Grothendieck groups and Whitehead groups of finite groups},
url = {http://eudml.org/doc/81831},
volume = {1},
year = {1968},
}

TY - JOUR
AU - Lam, Tsit-Yuen
TI - Induction theorems for Grothendieck groups and Whitehead groups of finite groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1968
PB - Elsevier
VL - 1
IS - 1
SP - 91
EP - 148
LA - eng
KW - group theory
UR - http://eudml.org/doc/81831
ER -

References

top
  1. [1] A. A. ALBERT, Fundamental concepts of higher algebra, University of Chicago Press, 1956. Zbl0073.00802
  2. [2] E. ARTIN and J. TATE, Class Field Theory, Harvard University Notes, 1961. 
  3. [3] M. ATIYAH, Characters and cohomology of finite groups (Publications mathématiques, I. H. E. S., No. 9). Zbl0107.02303
  4. [4] H. BASS, K-theory and stable algebra (Publications mathématiques, I. H. E. S., No. 22, p. 4-59). 
  5. [5] H. BASS, A. HELLER and R. SWAN, The Whitehead group of a polynomial extension (Publications mathématiques, I. H. E. S., No. 22, p. 61-79). Zbl0248.18026MR30 #4806
  6. [6] H. BASS, The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups (Topology, vol. 4, 1966, p. 391-410). Zbl0166.02401MR33 #1341
  7. [7] H. BASS, Topics in algebraic K-theory, Tata Institute Notes, 1966. 
  8. [8] H. BASS and J. MILNOR, On the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2) (mimeographed notes of Institute for Advanced Studies, Princeton, 1966). 
  9. [9] H. BASS and M. P. MURTHY, Grothendieck groups and Picard groups of abelian group rings (to appear in Annals of Math.). Zbl0157.08202
  10. [10] H. BASS, J. MILNOR and J.-P. SERRE, Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2), to appear in Publications mathématiques, I. H. E. S. Zbl0174.05203
  11. [11] H. CARTAN and S. EILENBERG, Homological algebra, Princeton University Press, 1956. Zbl0075.24305MR17,1040e
  12. [12] C. CURTIS and I. REINER, Representation theory of finite groups and associative algebras, J. Wiley, New York, 1962. Zbl0131.25601MR26 #2519
  13. [13] M. I. GIORGIUTTI, Thèse de l'Université de Paris, 1963. 
  14. [14] M. HALL, Theory of groups, Mc Millan, New York, 1959. Zbl0084.02202MR21 #1996
  15. [15] A. HELLER and I. REINER, Grothendieck groups of orders in semi-simple algebras (Trans. Amer. Math. Soc., vol. 112, 1964, p. 344-355). Zbl0127.25803MR28 #5093
  16. [16] G. HIGMAN, The units of group rings (Proc. London Math. Soc., vol. 46, 1940, p. 231-248). Zbl0025.24302MR2,5bJFM66.0104.04
  17. [17] T. Y. LAM, Artin exponent of finite groups (Journal of Algebra) (to appear). Zbl0277.20006
  18. [18] J. MILNOR, Whitehead torsion (Bull. Amer. Math. Soc., vol. 72, No. 3, 1966, p. 358-426). Zbl0147.23104MR33 #4922
  19. [19] D. S. RIM, Modules over finite groups (Ann. of Math., vol. 69, 1960, p. 700-712). Zbl0092.26104MR21 #3474
  20. [20] J.-P. SERRE, Corps locaux, Herman, Paris, 1962. Zbl0137.02601MR27 #133
  21. [21] R. G. SWAN, Induced representations and projective modules (Ann. of Math., vol. 71, 1960, p. 552-578). Zbl0104.25102MR25 #2131
  22. [22] R. G. SWAN, The Grothendieck ring of a finite group (Topology, vol. 2, 1963, p. 85-110). Zbl0119.02905MR27 #3683
  23. [23] O. ZARISKI and P. SAMUEL, Commutative algebra, vol. 1, Van Nostrand, Princeton, 1958. Zbl0081.26501MR19,833e
  24. [24] J. STROOKER, Thesis at Rijkuniversiteit te Utrecht, 1965. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.