Prolongations of linear partial differential equations. II. Inhomogeneous equations
Annales scientifiques de l'École Normale Supérieure (1968)
- Volume: 1, Issue: 4, page 617-625
- ISSN: 0012-9593
Access Full Article
topHow to cite
topGoldschmidt, Hubert. "Prolongations of linear partial differential equations. II. Inhomogeneous equations." Annales scientifiques de l'École Normale Supérieure 1.4 (1968): 617-625. <http://eudml.org/doc/81842>.
@article{Goldschmidt1968,
author = {Goldschmidt, Hubert},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {partial differential equations},
language = {eng},
number = {4},
pages = {617-625},
publisher = {Elsevier},
title = {Prolongations of linear partial differential equations. II. Inhomogeneous equations},
url = {http://eudml.org/doc/81842},
volume = {1},
year = {1968},
}
TY - JOUR
AU - Goldschmidt, Hubert
TI - Prolongations of linear partial differential equations. II. Inhomogeneous equations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1968
PB - Elsevier
VL - 1
IS - 4
SP - 617
EP - 625
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/81842
ER -
References
top- [1] H. GOLDSCHMIDT, Existence theorems for analytic linear partial differential equations (Ann. Math., vol. 86, 1967, p. 246-270). Zbl0154.35103MR36 #2933
- [2] H. GOLDSCHMIDT, Prolongations of linear partial differential equations. I. A conjecture of Élie Cartan (Ann. scient. Éc. Norm. Sup., 4e série, t. 1, 1968, p. 417-444). Zbl0167.09402MR38 #3888
- [3] D. G. QUILLEN, Formal properties of over-determined systems of linear partial differential equations (Ph. D. Thesis, Harvard University, 1964). Zbl1295.35005
- [4] D. C. SPENCER, Deformation of structures on manifolds defined by transitive, continuous pseudogroups. I-II (Ann. Math., vol. 76, 1962, p. 306-445). Zbl0124.38601MR27 #6287b
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.