Complete local factorial rings which are not Cohen-Macaulay in characteristic p

Robert M. Fossum; Phillip A. Griffith

Annales scientifiques de l'École Normale Supérieure (1975)

  • Volume: 8, Issue: 2, page 189-199
  • ISSN: 0012-9593

How to cite

top

Fossum, Robert M., and Griffith, Phillip A.. "Complete local factorial rings which are not Cohen-Macaulay in characteristic $p$." Annales scientifiques de l'École Normale Supérieure 8.2 (1975): 189-199. <http://eudml.org/doc/81954>.

@article{Fossum1975,
author = {Fossum, Robert M., Griffith, Phillip A.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {189-199},
publisher = {Elsevier},
title = {Complete local factorial rings which are not Cohen-Macaulay in characteristic $p$},
url = {http://eudml.org/doc/81954},
volume = {8},
year = {1975},
}

TY - JOUR
AU - Fossum, Robert M.
AU - Griffith, Phillip A.
TI - Complete local factorial rings which are not Cohen-Macaulay in characteristic $p$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1975
PB - Elsevier
VL - 8
IS - 2
SP - 189
EP - 199
LA - eng
UR - http://eudml.org/doc/81954
ER -

References

top
  1. [A] B. AUSLANDER, Brauer Group of a Ringed Space (J. Algebra, vol. 4, 1966, p. 259-265). Zbl0144.03401MR33 #7362
  2. [B] M.-J. BERTIN, Anneaux d'invariants d'anneaux de polynômes, en caractéristique p (C. R. Acad. Sc., Paris, t. 264, série A, 1967, p. 653-656). Zbl0147.29503MR35 #6661
  3. [CE] H. CARTAN and S. EILENBERG, Homological Algebra, Princeton University Press, Princeton, 1956. Zbl0075.24305MR17,1040e
  4. [EGA] A. GROTHENDIECK et J. DIEUDONNÉ, Éléments de Géométrie algébrique (I. H. E. S. Publ. Math., vol. I n° 4, 1960; vol. IV, n° 20, 1964; vol. IV, n° 24, 1965; vol. IV, n° 28, 1966; vol. IV, n° 32, 1967). 
  5. [F] J. FOGARTY, Invariant Theory, New York-Amsterdam, Benjamin, 1969. Zbl0191.51701MR39 #1458
  6. [Fo] R. FOSSUM, The Divisor Class Group of a Krull Domain, (Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 74, Berlin-Heidelberg-New York, Springer, 1973). Zbl0256.13001MR52 #3139
  7. [FG] R. FOSSUM and P. GRIFFITH, A Complete Local Factorial Ring of Dimension 4 which is not Cohen-Macaulay (Bull. Amer. Math. Soc., vol. 81, 1975, p. 111-113). Zbl0301.13006MR50 #9858
  8. [FK] E. FREITAG und K. REINHARDT, Algebraische Eigenschaften der lokalen Ringe in den Spitzen der Hilbertschen Modulgruppen (Inventiones Math., vol. 24, 1974, p. 121-148). Zbl0304.32018MR50 #324
  9. [HO] HARTSHORNE, ROBIN and A. OGUS, On the factoriality of local rings of small embedding codimension (Comm. Alg., vol. 1, 1974, p. 415-437). Zbl0286.13013MR50 #322
  10. [H 1] M. HOCHSTER, Cohen-Macaulay Modules. In Conference on Commutative Algebra (Lecture Notes in Math., No. 311, Berlin-Heidelberg-New York, Springer, 1973). Zbl0254.13030MR49 #5006
  11. [H 2] M. HOCHSTER, Properties of Noetherian Rings Stable under General Grade Reduction (Archiv der Mathematik, vol. 24, 1973, p. 393-396). Zbl0268.13013MR48 #8485
  12. [HR] M. HOCHSTER and J. ROBERTS, Rings of Invariants of Reductive Groups Acting on Regular Rings are Cohen-Macaulay (Advances in Math., vol. 13, 1974, p. 115-175). Zbl0289.14010MR50 #311
  13. [L] J. LIPMAN, Unique Factorization in Complete Local Rings [Proceedings, 1974, Summer Institute on Algebraic Geometry, Arcata, California (to appear)]. Zbl0306.13005
  14. [M] M. PAVAMAN MURTHY, A note on factorial rings. (Archiv der Math., vol. 15, 1964, p. 418-429). Zbl0123.03401MR30 #3905
  15. [Sa] P. SAMUEL, On Unique Factorization Domains (Ill. J. Math., vol. 5, 1961, p. 1-17). Zbl0147.29202MR22 #12121
  16. [SaL] P. SAMUEL, Classes de diviseurs et dérivées logarithmiques (Topology, vol. 3, Suppl. 1, 1964, p. 81-96). Zbl0127.26002MR29 #3490
  17. [Se] J.-P. SERRE, Sur la topologie des variétés algébriques en caractéristique p (International Symposium on Algebraic Topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958). Zbl0098.13103MR20 #4559
  18. [Y] SH. YUAN, Reflexive Modules and Algebra Class Groups over Noetherian Integrally Closed Domains (J. Algebra, vol. 32, 1974, p. 405-417). Zbl0297.13010MR50 #9931

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.