Formes quadratiques d'enlacement sur l'anneau des entiers d'un corps de nombres

J. Lannes

Annales scientifiques de l'École Normale Supérieure (1975)

  • Volume: 8, Issue: 4, page 535-579
  • ISSN: 0012-9593

How to cite

top

Lannes, J.. "Formes quadratiques d'enlacement sur l'anneau des entiers d'un corps de nombres." Annales scientifiques de l'École Normale Supérieure 8.4 (1975): 535-579. <http://eudml.org/doc/81970>.

@article{Lannes1975,
author = {Lannes, J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {4},
pages = {535-579},
publisher = {Elsevier},
title = {Formes quadratiques d'enlacement sur l'anneau des entiers d'un corps de nombres},
url = {http://eudml.org/doc/81970},
volume = {8},
year = {1975},
}

TY - JOUR
AU - Lannes, J.
TI - Formes quadratiques d'enlacement sur l'anneau des entiers d'un corps de nombres
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1975
PB - Elsevier
VL - 8
IS - 4
SP - 535
EP - 579
LA - fre
UR - http://eudml.org/doc/81970
ER -

References

top
  1. [1] J. V. ARMITAGE, On a Theorem of Hecke in Number Fields and Functions Fields (Invent. Math., vol. 2, 1967, p. 238-246). Zbl0143.06304MR35 #4188
  2. [2] J. V. ARMITAGE and A. FRÖLICH, Class Numbers and Unit Signatures (Mathematika, vol. 14, 1967, p. 94-98). Zbl0149.29501
  3. [3] J. BARGE, J. LANNES, F. LATOUR et P. VOGEL, Λ-sphères (Ann. scient. Éc. Norm. Sup., fasc. 4, 1974, p. 403 à 506). Zbl0314.55026
  4. [4] Z. I. BOREVITCH et I. R. CHAFAREVITCH, Théorie des nombres, Gauthier-Villars, Paris, 1967. Zbl0145.04901MR34 #5734
  5. [5] N. BOURBAKI, Éléments 34, Algèbre commutative, chap. VII, Diviseurs, Hermann, Paris. Zbl0141.03501
  6. [6] M. KAROUBI, Comptes rendus, 278, série A, 1974, p. 215 et p. 311. Zbl0279.18007
  7. [7] T. Y. LAM, The Algebraic Theory of Quadratic Forms, Benjamin, 1973. Zbl0259.10019MR53 #277
  8. [8] J. LANNES et F. LATOUR, Forme quadratique d'enlacement et applications (à paraître dans Astérisque). Zbl0318.57017
  9. [9] F. LATOUR, Résolutions et variétés géométriques. (I) Classes caractéristiques (à paraître). Zbl0376.57013
  10. [10] J. MILNOR, On Isometries of Inner Product Spaces (Invent. Math., vol. 8, 1969, p. 83-97). Zbl0177.05204MR40 #2764
  11. [11] J. MILNOR and D. HUSEMOLLER, Symmetric Bilinear Forms, Springer, 1973. Zbl0292.10016MR58 #22129
  12. [12] O. T. O'MEARA, Introduction to Quadratic Forms, Springer, 1963. Zbl0107.03301MR27 #2485
  13. [13] W. SCHARLAU, Quadratic Reciprocity Laws (J. Number Theory, vol. 4, 1972, p. 78-97). Zbl0241.12005MR45 #1835
  14. [14] W. SCHARLAU, «Quadratic Forms» (Queen's Papers on Pure and Applied Mathematics, n° 22, 1969). Zbl0194.35104MR42 #4574
  15. [15] W. SCHARLAU, Induction Theorems and the Structure of the Witt Group (Invent. Math., vol. 11, 1970, p. 37-44). Zbl0204.37503MR45 #1834
  16. [16] J. P. SERRE, Corps locaux, Hermann, Paris, 1962. Zbl0137.02601MR27 #133
  17. [17] C. T. C. WALL, On the Classification of Hermitian Forms. (I) Rings of the Algebraic Integers (Compos. Math., vol. 22, fasc. 4, 1970, p. 425-451). Zbl0211.07602MR43 #7425

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.