Local Chern classes
Annales scientifiques de l'École Normale Supérieure (1976)
- Volume: 9, Issue: 1, page 155-169
- ISSN: 0012-9593
Access Full Article
topHow to cite
topIversen, Birger. "Local Chern classes." Annales scientifiques de l'École Normale Supérieure 9.1 (1976): 155-169. <http://eudml.org/doc/81974>.
@article{Iversen1976,
author = {Iversen, Birger},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {1},
pages = {155-169},
publisher = {Elsevier},
title = {Local Chern classes},
url = {http://eudml.org/doc/81974},
volume = {9},
year = {1976},
}
TY - JOUR
AU - Iversen, Birger
TI - Local Chern classes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1976
PB - Elsevier
VL - 9
IS - 1
SP - 155
EP - 169
LA - eng
UR - http://eudml.org/doc/81974
ER -
References
top- [1] M. F. ATIYAH, K-Theory, Benjamin, New York-Amsterdam, 1967. Zbl0159.53302MR36 #7130
- [2] M. F. ATIYAH and F. HIRZEBRUCH, Analytic Cycles on Complex Manifolds (Topology, vol. 1, 1962, p. 25-45). Zbl0108.36401MR26 #3091
- [3] M. F. ATIYAH and F. HIRZEBRUCH, The Riemann-Roch Theorem for Analytic Embeddings (Topology, vol. 1, 1962, p. 151-166). Zbl0108.36402MR26 #5593
- [4] M. F. ATIYAH and I. M. SINGER, The Index of Elliptic Operators III (Annals of Math., vol. 87, 1968, p. 546-604). Zbl0164.24301MR38 #5245
- [5] P. BAUM, W. FULTON and R. MACPHERSON, Riemann-Roch for Singular Varieties (To appear).
- [6] P. BERTHELOT, A. GROTHENDIECK et L. ILLUSIE, Théorie des intersections et théorème de Riemann-Roch (Lecture Notes in Math., Springer Verlag, Berlin-Heidelberg-New York, 1971). Zbl0218.14001MR50 #7133
- [7] A. BOREL et A. HAEFLIGER, Classe d'homologie fondamentale (Bull. Soc. math. Fr., vol. 89, 1961, p. 461-513). Zbl0102.38502MR26 #6990
- [8] A. BOREL et J.-P. SERRE, Le théorème de Riemann-Roch (Bull. Soc. math. Fr., vol. 86, 1958, p. 97-136). Zbl0091.33004MR22 #6817
- [9] G. E. BREDON. Sheaf Theory. McGraw-Hill, New York, 1967. Zbl0158.20505MR36 #4552
- [10] W. FULTON, Riemann-Roch for Singular Varieties (Proc. Symp. Pure Math., XXIX, Amer. Math. Soc., Providence, Rhode Island, 1975). Zbl0306.14005
- [11] A. GROTHENDIECK, La théorie des classes de Chern (Bull. Soc. math. Fr., vol. 86, 1958, p. 137-154). Zbl0091.33201MR22 #6818
- [12] H. HIRONAKA, Smoothing of Algebraic Cycles of Low Codimension (Amer. J. Math., vol. 90, 1968, p. 1-54). Zbl0173.22801MR37 #210
- [13] L. ILLUSIE, Complexe cotangent et déformations. I. (Lecture Notes in Math., n° 239, Springer, Berlin, 1971). Zbl0224.13014MR58 #10886a
- [14] R. D. MACPHERSON, Chern Classes for Singular Algebraic Varieties (Ann. of Math., vol. 100, 1974, p. 423-432). Zbl0311.14001MR50 #13587
- [15] J.-P. SERRE, Algèbre locale et multiplicités (Lecture Notes in Math., n° 11, Springer, Berlin, 1965). Zbl0142.28603MR34 #1352
- [16] J.-L. VERDIER, Le théorème de Riemann-Roch pour les variétés algébriques éventuellement singulières (d'après P. Baum, W. Fulton et R. MacPherson) (Séminaire Bourbaki, 27e année, 1974/1975, Exp. 464. Lecture Notes in Math. n° 514, Springer, Berlin, 1976). Zbl0349.14001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.