Local Chern classes

Birger Iversen

Annales scientifiques de l'École Normale Supérieure (1976)

  • Volume: 9, Issue: 1, page 155-169
  • ISSN: 0012-9593

How to cite

top

Iversen, Birger. "Local Chern classes." Annales scientifiques de l'École Normale Supérieure 9.1 (1976): 155-169. <http://eudml.org/doc/81974>.

@article{Iversen1976,
author = {Iversen, Birger},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {1},
pages = {155-169},
publisher = {Elsevier},
title = {Local Chern classes},
url = {http://eudml.org/doc/81974},
volume = {9},
year = {1976},
}

TY - JOUR
AU - Iversen, Birger
TI - Local Chern classes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1976
PB - Elsevier
VL - 9
IS - 1
SP - 155
EP - 169
LA - eng
UR - http://eudml.org/doc/81974
ER -

References

top
  1. [1] M. F. ATIYAH, K-Theory, Benjamin, New York-Amsterdam, 1967. Zbl0159.53302MR36 #7130
  2. [2] M. F. ATIYAH and F. HIRZEBRUCH, Analytic Cycles on Complex Manifolds (Topology, vol. 1, 1962, p. 25-45). Zbl0108.36401MR26 #3091
  3. [3] M. F. ATIYAH and F. HIRZEBRUCH, The Riemann-Roch Theorem for Analytic Embeddings (Topology, vol. 1, 1962, p. 151-166). Zbl0108.36402MR26 #5593
  4. [4] M. F. ATIYAH and I. M. SINGER, The Index of Elliptic Operators III (Annals of Math., vol. 87, 1968, p. 546-604). Zbl0164.24301MR38 #5245
  5. [5] P. BAUM, W. FULTON and R. MACPHERSON, Riemann-Roch for Singular Varieties (To appear). 
  6. [6] P. BERTHELOT, A. GROTHENDIECK et L. ILLUSIE, Théorie des intersections et théorème de Riemann-Roch (Lecture Notes in Math., Springer Verlag, Berlin-Heidelberg-New York, 1971). Zbl0218.14001MR50 #7133
  7. [7] A. BOREL et A. HAEFLIGER, Classe d'homologie fondamentale (Bull. Soc. math. Fr., vol. 89, 1961, p. 461-513). Zbl0102.38502MR26 #6990
  8. [8] A. BOREL et J.-P. SERRE, Le théorème de Riemann-Roch (Bull. Soc. math. Fr., vol. 86, 1958, p. 97-136). Zbl0091.33004MR22 #6817
  9. [9] G. E. BREDON. Sheaf Theory. McGraw-Hill, New York, 1967. Zbl0158.20505MR36 #4552
  10. [10] W. FULTON, Riemann-Roch for Singular Varieties (Proc. Symp. Pure Math., XXIX, Amer. Math. Soc., Providence, Rhode Island, 1975). Zbl0306.14005
  11. [11] A. GROTHENDIECK, La théorie des classes de Chern (Bull. Soc. math. Fr., vol. 86, 1958, p. 137-154). Zbl0091.33201MR22 #6818
  12. [12] H. HIRONAKA, Smoothing of Algebraic Cycles of Low Codimension (Amer. J. Math., vol. 90, 1968, p. 1-54). Zbl0173.22801MR37 #210
  13. [13] L. ILLUSIE, Complexe cotangent et déformations. I. (Lecture Notes in Math., n° 239, Springer, Berlin, 1971). Zbl0224.13014MR58 #10886a
  14. [14] R. D. MACPHERSON, Chern Classes for Singular Algebraic Varieties (Ann. of Math., vol. 100, 1974, p. 423-432). Zbl0311.14001MR50 #13587
  15. [15] J.-P. SERRE, Algèbre locale et multiplicités (Lecture Notes in Math., n° 11, Springer, Berlin, 1965). Zbl0142.28603MR34 #1352
  16. [16] J.-L. VERDIER, Le théorème de Riemann-Roch pour les variétés algébriques éventuellement singulières (d'après P. Baum, W. Fulton et R. MacPherson) (Séminaire Bourbaki, 27e année, 1974/1975, Exp. 464. Lecture Notes in Math. n° 514, Springer, Berlin, 1976). Zbl0349.14001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.