On families of Pisot E -sequences

David G. Cantor

Annales scientifiques de l'École Normale Supérieure (1976)

  • Volume: 9, Issue: 2, page 283-308
  • ISSN: 0012-9593

How to cite

top

Cantor, David G.. "On families of Pisot $E$-sequences." Annales scientifiques de l'École Normale Supérieure 9.2 (1976): 283-308. <http://eudml.org/doc/81980>.

@article{Cantor1976,
author = {Cantor, David G.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {283-308},
publisher = {Elsevier},
title = {On families of Pisot $E$-sequences},
url = {http://eudml.org/doc/81980},
volume = {9},
year = {1976},
}

TY - JOUR
AU - Cantor, David G.
TI - On families of Pisot $E$-sequences
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1976
PB - Elsevier
VL - 9
IS - 2
SP - 283
EP - 308
LA - eng
UR - http://eudml.org/doc/81980
ER -

References

top
  1. [1] P. BATEMAN and A. DUQUETTE, The Analogue of the Pisot-Vijayaraghavan Numbers in Fields of Formal Power Series (Ill. J. Math., Vol. 6, 1962, pp. 594-606). Zbl0105.02801MR26 #2424
  2. [2] D. BOYD, Pisot Sequences which Satisfy no Linear Recurrence (to be published in Acta Arithmetica). Zbl0303.10036
  3. [3] D. CANTOR, Power Series with Integral Coefficients (Bull. Amer. Math. Soc., Vol. 69, 1963, pp. 362-366). Zbl0112.29901MR27 #1565
  4. [4] D. CANTOR, On Powers of Real Numbers (mod 1) (Proc. Amer. Math. Soc., Vol. 16, 1965, pp. 791-793). Zbl0152.03702MR31 #2235
  5. [5] D. CANTOR, Investigation of T-Numbers and E-Sequences (Computers in Number Theory, Academic Press, 1971, pp. 137-140). Zbl0231.10009
  6. [6] P. FLOR, Über eine Klasse von Folgen natürlicher Zahlen (Math. Annalen, Vol. 140, 1960, pp. 299-307). Zbl0095.03501MR24 #A1868
  7. [7] P. GALYEAN, On Linear Recurrence Relations for E-Sequences [Thesis (Unpublished), University of California at Los Angeles, 1971]. 
  8. [8] M. GRANDET-HUGOT, Éléments algébriques remarquables dans un corps de séries formelles (Acta Arithmetica, Vol. 14, 1968, pp. 177-184). Zbl0208.06204MR37 #2726
  9. [9] P. HENRICI, Applied and Computational Complex Analysis, Vol. 1, Wiley, 1974, pp. 45-55. Zbl0313.30001MR51 #8378
  10. [10] C. PISOT, La répartition modulo 1 et les nombres algébriques (Ann. Scuola Norm. Sup. Pisa, Vol. 7, 1938, pp. 205-248). Zbl0019.15502JFM64.0994.01
  11. [11] G. POLYA and G. SZEGÖ, Aufgaben und Lehrśátze aus der Analysis, Vol. 2, Berlin, 1925, p. 142. JFM51.0173.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.