Variétés géométriques et résolutions I. Classes caractéristiques

François Latour

Annales scientifiques de l'École Normale Supérieure (1977)

  • Volume: 10, Issue: 1, page 1-72
  • ISSN: 0012-9593

How to cite

top

Latour, François. "Variétés géométriques et résolutions I. Classes caractéristiques." Annales scientifiques de l'École Normale Supérieure 10.1 (1977): 1-72. <http://eudml.org/doc/81989>.

@article{Latour1977,
author = {Latour, François},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {1},
pages = {1-72},
publisher = {Elsevier},
title = {Variétés géométriques et résolutions I. Classes caractéristiques},
url = {http://eudml.org/doc/81989},
volume = {10},
year = {1977},
}

TY - JOUR
AU - Latour, François
TI - Variétés géométriques et résolutions I. Classes caractéristiques
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1977
PB - Elsevier
VL - 10
IS - 1
SP - 1
EP - 72
LA - fre
UR - http://eudml.org/doc/81989
ER -

References

top
  1. [1] J. BARGE, Structures différentiables sur les types d'homotopie rationnelle simplement connexe (Thèse, Orsay, 1975). Zbl0348.57016
  2. [2] J. BARGE, J. LANNES, F. LATOUR et P. VOGEL, Λ-sphères (Annales scient. Éc. Norm. Sup., t. 7, 1974, p. 463-506). Zbl0314.55026MR51 #14108
  3. [3] W. BROWDER, Surgery on Simply Connected Manifolds, Springer, 1972. Zbl0239.57016MR50 #11272
  4. [4] W. BROWDER, Poincaré Spaces, their Normal Fibrations and Surgery (Inventiones Math., 17, 1972, p. 191-202). Zbl0244.57007MR48 #5086
  5. [5] M. COHEN, Simplicial Structures and Transverse Cellularity (Ann. of Maths, vol. 85, 1967, p. 218-245). Zbl0147.42602MR35 #1037
  6. [6] P. CONNER and E. FLOYD, Differentiable Periodic Maps, Springer, 1964. Zbl0125.40103MR31 #750
  7. [7] S. HALPERIN and D. TOLEDO, Stiefel Whitney Homology Classes (Ann. of Maths, vol. 96, 1972, p. 511-525). Zbl0255.57007MR47 #1072
  8. [8] J. LANNES et F. LATOUR, Forme quadratique d'enlacement et application (Astérisque, n° 26, 1975). Zbl0318.57017MR53 #1605
  9. [9] F. LATOUR, Résolutions de variétés d'homologie rationnelle. I. Existence de résolutions (Comptes rendus, t. 280, série A, 1975, p. 1105-1108). Zbl0309.57005MR52 #1706
  10. [10] N. LEVITT, Homotopy Equivalences which are Cellular at the Prime 2 Bull. A.MS., vol. 79, 1973, p. 601-605. Zbl0274.57002MR47 #7755
  11. [11] N. LEVITT and J. MORGAN, Transversality Structures and P.L. Structures on Spherical Fibrations (Bull. A.M.S., vol. 78, 1972, p. 1064-1068). Zbl0267.55021MR47 #2602
  12. [12] J. MORGAN and D. SULLIVAN, Transversality Characteristic Cycles and Linking Cycles in Surgery Theory (Ann. of Maths, vol. 99, 1974, p. 463-544). Zbl0295.57008MR50 #3240
  13. [13] C. MORLET, Les méthodes de la topologie différentielle dans l'étude des variétés semi-linéaires (Annales Scient. Éc. Norm. Sup., t. 1, 1968, p. 313-394). Zbl0174.54601MR38 #5229
  14. [14] C. ROURKE, The Hauptvermutung According to Sullivan (Lecture notes I.A.S., 1967). 
  15. [15] C. ROURKE and B. SANDERSON, Introduction to Piecewise-linear Topology, Springer, 1972. Zbl0254.57010MR50 #3236
  16. [16] C. ROURKE and D. SULLIVAN, On the Kervaire Obstruction (Ann. of Maths, vol. 94, 1971, p. 397-413). Zbl0227.57012MR46 #4546
  17. [17] D. SULLIVAN, Geometric Topology, Mimeo, Princeton, 1967. 
  18. [18] D. SULLIVAN, Geometric Topology. Part I, Mimeo, M.I.T., 1970. 
  19. [19] D. SULLIVAN, Singularities in Spaces [Proceedings of Liverpool Singularities Symposium II (Springer Lecture Notes, n° 209)]. Zbl0233.57006MR49 #4002
  20. [20] C. WALL, Non Additivity of the Signature (Inventiones, vol. 7, 1969, p. 269-274). Zbl0176.21501MR39 #7615
  21. [21] C. WALL, Surgery on Compact Manifolds, Academic Press, 1970. Zbl0219.57024MR55 #4217

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.