Équivalence projective et équivalence conforme

Jacques Gasqui

Annales scientifiques de l'École Normale Supérieure (1979)

  • Volume: 12, Issue: 1, page 101-134
  • ISSN: 0012-9593

How to cite

top

Gasqui, Jacques. "Équivalence projective et équivalence conforme." Annales scientifiques de l'École Normale Supérieure 12.1 (1979): 101-134. <http://eudml.org/doc/82028>.

@article{Gasqui1979,
author = {Gasqui, Jacques},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {germ of diffeomorphism; linear connection; bundle of k-jets; prolongation},
language = {fre},
number = {1},
pages = {101-134},
publisher = {Elsevier},
title = {Équivalence projective et équivalence conforme},
url = {http://eudml.org/doc/82028},
volume = {12},
year = {1979},
}

TY - JOUR
AU - Gasqui, Jacques
TI - Équivalence projective et équivalence conforme
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1979
PB - Elsevier
VL - 12
IS - 1
SP - 101
EP - 134
LA - fre
KW - germ of diffeomorphism; linear connection; bundle of k-jets; prolongation
UR - http://eudml.org/doc/82028
ER -

References

top
  1. [1] BERGER-GAUDUCHON-MAZET, Le spectre d'une variété riemannienne (Lecture Notes in Math., n° 194, Springer-Verlag, Berlin, 1971). Zbl0223.53034MR43 #8025
  2. [2] E. CARTAN, Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1928 ; 2e édition 1946. Zbl0060.38101JFM54.0755.01
  3. [3] L. P. EISENHART, Non-Riemannian Geometry (Amer. Math. Soc. Colloquium Publications, vol. VIII). JFM53.0681.02
  4. [4] J. GASQUI, Sur l'existence d'immersions isométriques locales pour les variétés riemanniennes (J. Diff. Geom., vol. 10, 1975, p. 61-84). Zbl0296.53040MR51 #6665
  5. [5] H. GOLDSCHMIDT, Existence Theorems for Analytic Linear Partial Differential Equations (Ann. of Math., vol. 86, 1967, p. 246-270). Zbl0154.35103MR36 #2933
  6. [6] H. GOLDSCHMIDT, Integrability Criteria for Systems of Non-Linear Partial Differential Equations (J. Diff. Geom., vol. 1, 1967, p. 269-307). Zbl0159.14101MR37 #1746
  7. [7] H. GOLDSCHMIDT, Sur la structure des équations de Lie. I. Le troisième théorème fondamental (J. Diff. Geom., vol. 6, 1972, p. 357-373). Zbl0235.58011MR46 #923
  8. [8] S. KOBAYASHI et T. NAGANO, On Projective Connections (J. Math. and Mech., vol. 13, 1964, p. 215-235). Zbl0117.39101MR28 #2501
  9. [9] R. S. KULKARNI, Curvature and Metric (Ann. of Math., vol. 91, 1970, p. 311-331). Zbl0191.19903MR41 #2581
  10. [10] R. S. KULKARNI, Curvature Structures and Conformal Transformations (J. Diff. Geom., vol. 4, 1970, p. 425-451). Zbl0206.24403MR44 #2173
  11. [11] B. MALGRANGE, Equations de Lie, II. (J. Diff. Geom., vol. 7, 1972, p. 117-141). Zbl0264.58009MR48 #5128
  12. [12] N. TANAKA, Projective Connections and Projective Transformations. (Nagoya Math. J., vol. 12, 1957, p. 1-24). Zbl0081.38404MR21 #3899
  13. [13] J. A. SCHOUTEN, Uber die konforme Abbildung n-dimensionaler Mannigfaltigkeiten... (Math. Z., vol. 11, 1921, p. 58-88). Zbl48.0857.02JFM48.0857.02
  14. [14] O. VEBLEN et J. M. THOMAS, Projective Invariants of Affine Geometry of Paths (Ann. of Math., vol. 27, 1926, p. 279-296). Zbl52.0732.01JFM52.0732.01
  15. [15] H. WEYL, Zur Infinitesimalgeometrie ; Einordnung der projektiven und der konformen Auffassung [Göttingen Nachrichten, 1921, p. 99-112 (ou Gesammelte Abhandlungen, vol. II, 1968, p. 195-207, Springer). Zbl48.0844.04JFM48.0844.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.