On the Chow groups of certain rational surfaces

Spencer Bloch

Annales scientifiques de l'École Normale Supérieure (1981)

  • Volume: 14, Issue: 1, page 41-59
  • ISSN: 0012-9593

How to cite

top

Bloch, Spencer. "On the Chow groups of certain rational surfaces." Annales scientifiques de l'École Normale Supérieure 14.1 (1981): 41-59. <http://eudml.org/doc/82066>.

@article{Bloch1981,
author = {Bloch, Spencer},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Chow group; Galois cohomology; Neron-Severi torus; K2; finiteness theorem; vanishing theorem; rational surfaces},
language = {eng},
number = {1},
pages = {41-59},
publisher = {Elsevier},
title = {On the Chow groups of certain rational surfaces},
url = {http://eudml.org/doc/82066},
volume = {14},
year = {1981},
}

TY - JOUR
AU - Bloch, Spencer
TI - On the Chow groups of certain rational surfaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1981
PB - Elsevier
VL - 14
IS - 1
SP - 41
EP - 59
LA - eng
KW - Chow group; Galois cohomology; Neron-Severi torus; K2; finiteness theorem; vanishing theorem; rational surfaces
UR - http://eudml.org/doc/82066
ER -

References

top
  1. [1] H. BASS, Algebraic K-Theory, New York, W. A. Benjamin Inc., 1968. Zbl0174.30302MR40 #2736
  2. [2] H. BASS, and J. TATE, The Milnor Ring of a Global Field, in Algebraic K-Theory II (Springer Lecture Notes in Math., No. 342, Springer-Verlag, 1973). Zbl0299.12013MR56 #449
  3. [3] F. CHÂTELET, Points rationnels sur certaines courbes et surfaces cubiques (Enseignement math., Vol. 5, 1959, pp. 153-170). Zbl0100.27404MR24 #A85
  4. [4] J.-L. COLLIOT-THÉLÈNE and D. CORAY, L'équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques (Compositic Mathematica, Vol. 39, 1979, pp. 301-332). Zbl0386.14003MR81d:14008
  5. [5] J.-L. COLLIOT-THÉLÈNE and J.-J. SANSUC, La R-équivalence sur les tores (Ann. scient. Éc. Norm. Sup., T. 10, 1977, pp. 175-230). Zbl0356.14007MR56 #8576
  6. [6] R. ELMAN and T. Y. LAM, On the Quaternion Symbol Homomorphism gF : k2F → B (F), in Algebraic K-Theory II (Springer Lecture Notes in Math., No. 342, Springer-Verlag, 1973). Zbl0267.10030MR52 #272
  7. [7] T. Y. LAM, The Algebraic Theory of Quadratic Forms, W. A. Benjamin, Inc., New York, 1973. Zbl0259.10019MR53 #277
  8. [8] YU. MANIN, Le groupe de Brauer-Grothendieck en géométrie diophantienne (Actes Congrès Int. Math., Nice, 1970, pp. 401-411). Zbl0239.14010
  9. [9] YU. MANIN, Cubic Forms, North Holland, Amsterdam, 1974. Zbl0277.14014
  10. [10] J. MILNOR, Algebraic K-Theory and Quadratic Forms (Inventiones Math., Vol. 9, 1970, pp. 318-344). Zbl0199.55501MR41 #5465
  11. [11] J. MILNOR, Introduction to Algebraic K-Theory (Ann. Math., Studies, No. 72, Princeton University Press, 1971). Zbl0237.18005MR50 #2304
  12. [12] D. QUILLEN, Higher Algebraic K-Theory, in Algebraic K-Theory I (Lecture Notes in Math., No. 341, Springer-Verlag, 1973). Zbl0292.18004MR49 #2895
  13. [13] J.-P. SERRE, Corps Locaux, Hermann, Paris, 1962. Zbl0137.02601MR27 #133
  14. [14] C. Sherman, K-Cohomology of Regular Schemes, (to appear in Communications in Algebra). 
  15. [15] J.-L. COLLIOT-THÉLÈNE and J.-J. SANSUC, A Series of Notes in C. R. Acad. Sc., T. 282, série A, 1976 ; T. 284, série A, 1977 ; T. 284, 1977 ; T. 287, série A, 1978. 
  16. [16] S. LANG, Rapport sur la cohomologie des groupes, Benjamin, New York, 1966. Zbl0171.28903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.