Representations of algebraic groups in prime characteristics

George R. Kempf

Annales scientifiques de l'École Normale Supérieure (1981)

  • Volume: 14, Issue: 1, page 61-76
  • ISSN: 0012-9593

How to cite

top

Kempf, George R.. "Representations of algebraic groups in prime characteristics." Annales scientifiques de l'École Normale Supérieure 14.1 (1981): 61-76. <http://eudml.org/doc/82067>.

@article{Kempf1981,
author = {Kempf, George R.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {connected reductive group; rational irreducible representations; Steinberg representations; Mumford's conjecture; cohomology of sheaves on homogeneous space; group schemes},
language = {eng},
number = {1},
pages = {61-76},
publisher = {Elsevier},
title = {Representations of algebraic groups in prime characteristics},
url = {http://eudml.org/doc/82067},
volume = {14},
year = {1981},
}

TY - JOUR
AU - Kempf, George R.
TI - Representations of algebraic groups in prime characteristics
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1981
PB - Elsevier
VL - 14
IS - 1
SP - 61
EP - 76
LA - eng
KW - connected reductive group; rational irreducible representations; Steinberg representations; Mumford's conjecture; cohomology of sheaves on homogeneous space; group schemes
UR - http://eudml.org/doc/82067
ER -

References

top
  1. [1] H. H. ANDERSEN, On the Structure of the Cohomology of Line Bundles on G/B (to appear). 
  2. [2] H. H. ANDERSEN, The Frobenius Morphism on the Cohomology of Homogeneous Vector Bundles on G/B (to appear). Zbl0421.20016
  3. [3] A. BOREL, Linear Algebraic Groups, Benjamin, New York, 1969. Zbl0186.33201MR40 #4273
  4. [4] A. BOREL et al., Seminar on Algebraic Groups and Related Finite Groups (Lecture Notes in Math., No 131, Springer-Verlag, Berlin, 1970). Zbl0192.36201MR41 #3484
  5. [5] E. CLINE, B. PARSHALL and L. SCOTT, Induced Modules and Extensions of Representations (Inventiones Math., Vol. 41, (1978, pp. 41-51). Zbl0399.20039MR58 #16897
  6. [6] C. W. CURTIS, Representation of Lie Algebras of Classical Type with Applications to Linear Groups (J. Math. and Mech., Vol. 9, 1960, pp. 307-326). Zbl0089.25302MR22 #1634
  7. [7] W. HABOUSH, Reductive Groups are Geometrically Reductive (Annals of Math., Vol. 102, 1975, pp. 67-84). Zbl0316.14016MR52 #3179
  8. [8] W. HABOUSH, A short Characteristic p Proof of the Kempf Vanishing Theorem (Inventiones Math.). 
  9. [9] G. KEMPF, Linear Systems on Homogeneous Spaces (Ann. of Math., Vol. 103, 1976, pp. 557-591). Zbl0327.14016MR53 #13229
  10. [10] G. KEMPF, The Grothendieck-Cousin Complex of an Induced Representation (Advances in Math, Vol. 29, 1978, pp. 310-396). Zbl0393.20027MR80g:14042
  11. [11] R. STEINBERG, Prime Power Representations of Finite Linear Groups II (Can. J. Math., Vol. 9, 1957, pp. 347-351). Zbl0079.25601MR19,387d
  12. [12] R. STEINBERG, Representations of Algebraic Groups (Nagoya Math. J., Vol. 22, 1963, pp. 33-56). Zbl0271.20019MR27 #5870
  13. [13] M. SWEEDLER, Hopf Algebras, Benjamin, New York, 1969. Zbl0194.32901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.