Representations of algebraic groups in prime characteristics
Annales scientifiques de l'École Normale Supérieure (1981)
- Volume: 14, Issue: 1, page 61-76
- ISSN: 0012-9593
Access Full Article
topHow to cite
topKempf, George R.. "Representations of algebraic groups in prime characteristics." Annales scientifiques de l'École Normale Supérieure 14.1 (1981): 61-76. <http://eudml.org/doc/82067>.
@article{Kempf1981,
author = {Kempf, George R.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {connected reductive group; rational irreducible representations; Steinberg representations; Mumford's conjecture; cohomology of sheaves on homogeneous space; group schemes},
language = {eng},
number = {1},
pages = {61-76},
publisher = {Elsevier},
title = {Representations of algebraic groups in prime characteristics},
url = {http://eudml.org/doc/82067},
volume = {14},
year = {1981},
}
TY - JOUR
AU - Kempf, George R.
TI - Representations of algebraic groups in prime characteristics
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1981
PB - Elsevier
VL - 14
IS - 1
SP - 61
EP - 76
LA - eng
KW - connected reductive group; rational irreducible representations; Steinberg representations; Mumford's conjecture; cohomology of sheaves on homogeneous space; group schemes
UR - http://eudml.org/doc/82067
ER -
References
top- [1] H. H. ANDERSEN, On the Structure of the Cohomology of Line Bundles on G/B (to appear).
- [2] H. H. ANDERSEN, The Frobenius Morphism on the Cohomology of Homogeneous Vector Bundles on G/B (to appear). Zbl0421.20016
- [3] A. BOREL, Linear Algebraic Groups, Benjamin, New York, 1969. Zbl0186.33201MR40 #4273
- [4] A. BOREL et al., Seminar on Algebraic Groups and Related Finite Groups (Lecture Notes in Math., No 131, Springer-Verlag, Berlin, 1970). Zbl0192.36201MR41 #3484
- [5] E. CLINE, B. PARSHALL and L. SCOTT, Induced Modules and Extensions of Representations (Inventiones Math., Vol. 41, (1978, pp. 41-51). Zbl0399.20039MR58 #16897
- [6] C. W. CURTIS, Representation of Lie Algebras of Classical Type with Applications to Linear Groups (J. Math. and Mech., Vol. 9, 1960, pp. 307-326). Zbl0089.25302MR22 #1634
- [7] W. HABOUSH, Reductive Groups are Geometrically Reductive (Annals of Math., Vol. 102, 1975, pp. 67-84). Zbl0316.14016MR52 #3179
- [8] W. HABOUSH, A short Characteristic p Proof of the Kempf Vanishing Theorem (Inventiones Math.).
- [9] G. KEMPF, Linear Systems on Homogeneous Spaces (Ann. of Math., Vol. 103, 1976, pp. 557-591). Zbl0327.14016MR53 #13229
- [10] G. KEMPF, The Grothendieck-Cousin Complex of an Induced Representation (Advances in Math, Vol. 29, 1978, pp. 310-396). Zbl0393.20027MR80g:14042
- [11] R. STEINBERG, Prime Power Representations of Finite Linear Groups II (Can. J. Math., Vol. 9, 1957, pp. 347-351). Zbl0079.25601MR19,387d
- [12] R. STEINBERG, Representations of Algebraic Groups (Nagoya Math. J., Vol. 22, 1963, pp. 33-56). Zbl0271.20019MR27 #5870
- [13] M. SWEEDLER, Hopf Algebras, Benjamin, New York, 1969. Zbl0194.32901
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.