On the Picard number of a complex projective variety

Tetsuji Shioda

Annales scientifiques de l'École Normale Supérieure (1981)

  • Volume: 14, Issue: 3, page 303-321
  • ISSN: 0012-9593

How to cite

top

Shioda, Tetsuji. "On the Picard number of a complex projective variety." Annales scientifiques de l'École Normale Supérieure 14.3 (1981): 303-321. <http://eudml.org/doc/82076>.

@article{Shioda1981,
author = {Shioda, Tetsuji},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Lefschetz number; rank of Neron-Severi group; Picard number},
language = {eng},
number = {3},
pages = {303-321},
publisher = {Elsevier},
title = {On the Picard number of a complex projective variety},
url = {http://eudml.org/doc/82076},
volume = {14},
year = {1981},
}

TY - JOUR
AU - Shioda, Tetsuji
TI - On the Picard number of a complex projective variety
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1981
PB - Elsevier
VL - 14
IS - 3
SP - 303
EP - 321
LA - eng
KW - Lefschetz number; rank of Neron-Severi group; Picard number
UR - http://eudml.org/doc/82076
ER -

References

top
  1. [1] P. DELIGNE, Le théorème de Noether, Exp. XIX, SGA 7 II, in Groupes de Monodromie en Géométrie Algébrique (Lectures Notes in Math., No. 340, Springer, Berlin-Heidelberg-New York, 1973). Zbl0269.14019MR50 #7135
  2. [2] P. DELIGNE, Cohomologie étale (SGA 4 1/2) (Lecture Notes in Math., No. 569, Springer, Berlin-Heidelberg-New York, 1977). Zbl0345.00010MR57 #3132
  3. [3] S. LANG, Algebra, Addison-Wesley, Massachusetts, 1965. Zbl0193.34701MR33 #5416
  4. [4] M. MIZUKAMI, Birational Morphisms from certain Quartic Surfaces to Kummer Surfaces (in Japanese) (Master Thesis, Univ. of Tokyo, 1976). 
  5. [5] V. V. NIKULIN, Finite Automorphism Groups of Kähler K3 Surfaces (in Russian) (Mem. Moscow Math. Soc., Vol. 38, 1979, pp. 75-137). Zbl0433.14024MR81e:32033
  6. [6] N. SASAKURA, On some Results on the Picard Numbers of certain Algebraic Surfaces (J. Math. Soc. Japan, Vol. 20, 1968, pp. 297-321). Zbl0202.51801MR37 #4075
  7. [7] T. SHIODA, The Hodge Conjecture for Fermat Varieties (Math. Ann., Vol. 245, 1979, pp. 175-184). Zbl0403.14007MR80k:14035
  8. [8] T. SHIODA and T. KATSURA, On Fermat Varieties (Tôhoku Math. J., Vol. 31, 1979, pp. 97-115). Zbl0415.14022MR80g:14033
  9. [9] J. TATE, Algebraic Cycles and Poles of Zeta Functions, in Arithmetical Algebraic Geometry, Harper and Row, New York, 1965. Zbl0213.22804MR37 #1371
  10. [10] E. BRIESKORN, Die Auflösung der rationalen Singularitäten holomorpher Abbildungen (Math. Ann., Vol. 178, 1968, pp. 255-270). Zbl0159.37703MR38 #2140

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.